Topics in Mathematical Theories of Elastic Complex Fluids
弹性复杂流体数学理论专题
基本信息
- 批准号:0707594
- 负责人:
- 金额:$ 17.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complex fluids are viscoelastic materials that posses both solids and viscous liquids properties. These materials are abundant in our daily life, including wide varieties of mixtures, polymeric solutions, colloidal dispersions, biofluids, electro-rheological fluids, liquid crystals and liquid crystal polymers. Unlike solids and simple liquids, the model equations for complex fluids continue to evolve as new experimental evidence become available. The systems that we propose to study consist of polymers with induced microstructure due to internal elastic morphology and dynamics.The multiscale, multi-physics nature of the mathematical descriptions and self-consistent theories of these materials requires the combination of tools from nonlinear PDE, calculus of variations, asymptotic expansion, kinetic theory and statistical physics. We propose to develop the mathematical theories to understand these fascinating materials. The main focus is on understanding the role of microstructures in the special coupling between the kinetic transport and the induced elastic stresses.Complex fluids exhibit many intricate rheological and hydrodynamic features that are very important to biological and industrial processes. Applications include the treatment of airway closure disease by surfactant injection; polymer additive to jets in inkjet printers, fuel injection, fire extinguishers; magneto-rheological damping of structural vibrations etc. New mathematical descriptions and self-consistent theories are needed to resolve problems such as the intermolecular and distortional elastic interactions, their coupling to hydrodynamics and applied electric or magnetic fields. This proposal is devoted to develop new mathematical theories to use in the modeling, analysis and the designing of numerical algorithms, in order to understand these important materials.
复合流体是一种既具有固体性质又具有粘性液体性质的粘弹性材料。这些材料广泛存在于我们的日常生活中,包括各种混合物、聚合物溶液、胶体分散体、生物流体、电流变液、液晶和液晶聚合物。与固体和简单液体不同,复杂流体的模型方程随着新的实验证据的出现而不断演变。我们要研究的体系是由内部弹性形态和动力学引起的具有诱导微结构的聚合物组成的,这些材料的数学描述和自洽理论的多尺度、多物理性质需要非线性偏微分方程组、变分法、渐近展开、动力学理论和统计物理的工具的结合。我们建议发展数学理论来理解这些迷人的材料。主要的重点是了解微观结构在动力学输运和诱导的弹性应力之间的特殊耦合中的作用。复杂流体表现出许多复杂的流变学和流体动力学特征,这些特征对生物和工业过程非常重要。应用包括通过注射表面活性剂治疗呼吸道闭塞疾病;喷墨打印机喷嘴的聚合物添加剂、燃油喷射、灭火器;结构振动的磁流变减振等。需要新的数学描述和自洽理论来解决诸如分子间和扭曲的弹性相互作用、它们与流体力学的耦合以及施加的电场或磁场等问题。这项建议致力于发展新的数学理论,用于建模、分析和设计数值算法,以便理解这些重要材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chun Liu其他文献
Modulation of lung molecular biomarkers by β‐carotene in the Physicians' Health Study
医生健康研究中β-胡萝卜素对肺分子生物标志物的调节
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:6.2
- 作者:
Chun Liu;Xiang‐Dong Wang;L. Mucci;J. M. Gaziano;Shumin M. Zhang - 通讯作者:
Shumin M. Zhang
Confronting heavy tau neutrinos with neutrino oscillations
面对重 tau 中微子和中微子振荡
- DOI:
10.1142/s0217732301005023 - 发表时间:
2001 - 期刊:
- 影响因子:1.4
- 作者:
Chun Liu - 通讯作者:
Chun Liu
Automated Construction and Application of Operations and Maintenance Knowledge Graph
运维知识图谱自动化构建与应用
- DOI:
10.1109/ccsb60789.2023.10398764 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yongkun Zheng;Yibing Zhao;Haoran Luo;Dengrong Wei;Chun Liu;Huazheng Fu;Kang Chen;Chong Chen;Shuo Zhao - 通讯作者:
Shuo Zhao
Forecasting Realized Volatility : A Bayesian Model Averaging Approach
预测已实现波动率:贝叶斯模型平均方法
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Chun Liu - 通讯作者:
Chun Liu
A simple and efficient protocol for the palladium-catalyzed ligand-free Suzuki reaction at room temperature in aqueous DMF
室温下 DMF 水溶液中钯催化无配体 Suzuki 反应的简单高效方案
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:9.8
- 作者:
Chun Liu;Qijian Ni;Fanying Bao;Jieshan Qiu - 通讯作者:
Jieshan Qiu
Chun Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chun Liu', 18)}}的其他基金
Institute for Data, Econometrics, Algorithms and Learning (IDEAL)
数据、计量经济学、算法和学习研究所 (IDEAL)
- 批准号:
2216926 - 财政年份:2022
- 资助金额:
$ 17.03万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Microstructure by Design: Integrating Grain Growth Experiments, Data Analytics, Simulation, and Theory
合作研究:DMREF:微观结构设计:整合晶粒生长实验、数据分析、模拟和理论
- 批准号:
2118181 - 财政年份:2021
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale Modeling and Numerical Methods for Charge Transport in Ion Channels
合作研究:离子通道中电荷传输的多尺度建模和数值方法
- 批准号:
1950868 - 财政年份:2020
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
Topics in Complex Fluids and Biophysiology: the Energetic Variational Approaches
复杂流体和生物生理学主题:能量变分方法
- 批准号:
1714401 - 财政年份:2017
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
Energetic Variational Approaches in Complex Fluids and Electrophysiology
复杂流体和电生理学中的能量变分方法
- 批准号:
1759536 - 财政年份:2017
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
Topics in Complex Fluids and Biophysiology: the Energetic Variational Approaches
复杂流体和生物生理学主题:能量变分方法
- 批准号:
1759535 - 财政年份:2017
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
Energetic Variational Approaches in Complex Fluids and Electrophysiology
复杂流体和电生理学中的能量变分方法
- 批准号:
1412005 - 财政年份:2014
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
Collaborative Research: Advanced Numberical Techniques for the Simulation of Magnetohydrodynamics
合作研究:磁流体动力学模拟的先进数值技术
- 批准号:
1216938 - 财政年份:2012
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variational multiscale approaches to biomolecular structure, dynamics and transport
FRG:协作研究:生物分子结构、动力学和运输的变分多尺度方法
- 批准号:
1159937 - 财政年份:2012
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
Energetic Variational Approaches in Complex Fluids
复杂流体中的能量变分方法
- 批准号:
1109107 - 财政年份:2011
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
相似海外基金
Mathematical Problems Modeling Nematic Liquid Crystals: from Macroscopic to Microscopic Theories
向列液晶建模的数学问题:从宏观到微观理论
- 批准号:
2307525 - 财政年份:2023
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
LEAPS-MPS: Mathematical Modeling of Targeted Drug Delivery: Unifying Lighthill and Taylor Theories
LEAPS-MPS:靶向药物输送的数学模型:统一莱特希尔和泰勒理论
- 批准号:
2211633 - 财政年份:2022
- 资助金额:
$ 17.03万 - 项目类别:
Standard Grant
The aim of this PhD is to combine the theories of social disorganisation and differential association in a mathematical model to see what emergent beh
这个博士学位的目的是将社会解组织和差异关联理论结合到一个数学模型中,看看会出现什么现象。
- 批准号:
2408966 - 财政年份:2020
- 资助金额:
$ 17.03万 - 项目类别:
Studentship
A mathematical study of dimensionality reduction and embedding by theories of delay-coordinate systems and algebraic geometry
延迟坐标系和代数几何理论降维和嵌入的数学研究
- 批准号:
20K03747 - 财政年份:2020
- 资助金额:
$ 17.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Analysis of Alternative Theories of Gravity
其他引力理论的数学分析
- 批准号:
523168-2018 - 财政年份:2018
- 资助金额:
$ 17.03万 - 项目类别:
University Undergraduate Student Research Awards
Extended theories of audio source separation based on statistical independence and various mathematical structures
基于统计独立性和各种数学结构的音频源分离扩展理论
- 批准号:
17H06572 - 财政年份:2017
- 资助金额:
$ 17.03万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Mathematical Foundations of Topological Quantum Field Theories
拓扑量子场论的数学基础
- 批准号:
1941474 - 财政年份:2017
- 资助金额:
$ 17.03万 - 项目类别:
Studentship
Limiting Theories in Material Science: Mathematical derivation and Analysis
材料科学的极限理论:数学推导与分析
- 批准号:
313878761 - 财政年份:2016
- 资助金额:
$ 17.03万 - 项目类别:
Independent Junior Research Groups
Representation theories of the conformal Galilei groups and their mathematical and physical applications
共形伽利略群的表示理论及其数学和物理应用
- 批准号:
26400209 - 财政年份:2014
- 资助金额:
$ 17.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Theoretical Study of the Conceptual, Mathematical, and Explanatory Interconnections at the Foundations of Classical Field Theories
经典场论基础上概念、数学和解释相互联系的理论研究
- 批准号:
1331126 - 财政年份:2013
- 资助金额:
$ 17.03万 - 项目类别:
Continuing Grant