Self-assembly mediated by aqueous interfaces: A novel computational study of structure, thermodynamics, and dynamics

水界面介导的自组装:结构、热力学和动力学的新颖计算研究

基本信息

  • 批准号:
    1159990
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-05-01 至 2016-04-30
  • 项目状态:
    已结题

项目摘要

Abstract1159990Garde, ShekharSelf-assembly plays an important role in natural processes and technologies used to make new materials. A key goal in studies of self-assembly is to better understand how the interactions of the constituents lead to the self-assembled structures, and their resulting properties. Aqueous interfaces are ubiquitous and often play an important role in self-assembly, yet, a detailed understanding of how the interfaces mediates the assembly is lacking. The PIs propose a new computational approach using molecular (MD) and Brownian dynamics (BD) simulations to shed light on interface-mediated assembly at aqueous interfaces. Properties of water structure, dynamics, and fluctuations are fundamentally altered near extended interfaces, especially near hydrophobic interfaces. They hypothesize that the altered properties of water, in turn, affect the structure, stability, and interactions of macromolecules. This hypothesis is supported by significant preliminary work. They expect that assembly of macromolecules will be significantly different at interfaces compared to that in bulk water. Fundamental understanding of the processes leading to complex interface-mediated assembly is the central focus of our proposal. Understanding of the molecular behavior of water at interfaces is critical to understanding how interfaces alter water-mediated interations near them. Therefore, modeling of phenomena at a wide range of length scales from that of a single water molecule to large self-assembled structures is required. To this end, the approach focuses on modeling of hierarchically complex systems from small solutes to macromolecular assemblies. Specific Aims of the work are to: (1) Quantify the binding to and the behavior of single molecules from small model solutes to flexible homo and heteropolymers, and peptides at aqueous interfaces using MD simulations. (2) Quantify how interfaces modulate the interactions of pairs and larger numbers of molecules in their vicinity. (3) Develop coarse-grained Brownian dynamics simulations to examine many particle assembly at interfaces. Information about the role of interfaces obtained from Aims 1 and 2 will serve as important input to BD simulations. (4) Explore and quantify how fluid flow and deformation of the interface impact the structures, the process of assembly, and the flow properties of the assembled structures. Intellectual Merit: Although water at interfaces is a highly active area of research both from experimental and theoretical perspectives, understanding of how the altered properties of water affect water-mediated interactions at interfaces is truly in its infancy. The work promises to break new ground by providing such molecular level understanding and uncovering its impact on interface-mediated assembly at larger length and time scales. The significant preliminary work by our groups and experimental data from a number of different groups focused on biological and colloidal systems point to the important role of aqueous interfaces in diverse fundamental problems and technological applications. The work has the potential to provide a framework to interpret those experimental results, enable technological applications and new materials development. Broader Impacts: Interfaces are ubiquitous in biological and nanoscopic systems, and also play a central role in numerous technological applications ranging from separations, coatings, to new materials development. Recent work has highlighted the role of interfaces in nucleating and accelerating fibril formation of alzheimers peptides. The project will impact the understanding of many such natural processes, and enhance our ability to design new technologies based on self assembly at interfaces. The research is coupled with significant efforts in education and outreach. This includes involvement of undergraduates in research and motivation of underrepresented groups into science and engineering, achieved through two different programs at Rensselaer, the New Visions Math, Engineering, Technology, and Science Program, and the Molecularium. The PI is a co-leader of the highly successful Molecularim Project (IMAX movie released last December).
自组装在制造新材料的自然过程和技术中起着重要的作用。自组装研究的一个关键目标是更好地理解成分如何相互作用导致自组装结构,以及它们的最终性质。水相界面无处不在,在自组装中起着重要的作用,然而,缺乏对界面如何调节组装的详细理解。pi提出了一种新的计算方法,使用分子(MD)和布朗动力学(BD)模拟来揭示水界面中界面介导的组装。在扩展界面附近,特别是在疏水界面附近,水的结构、动力学和波动性质从根本上改变了。他们假设水性质的改变反过来会影响大分子的结构、稳定性和相互作用。这一假设得到了大量前期工作的支持。他们预计大分子在界面处的组装与在散装水中的组装将有显著不同。对导致复杂接口中介组装的过程的基本理解是我们建议的中心焦点。了解水在界面处的分子行为对于理解界面如何改变其附近水介导的相互作用至关重要。因此,需要在从单个水分子到大型自组装结构的广泛长度尺度上对现象进行建模。为此,该方法侧重于从小溶质到大分子组装的分层复杂系统的建模。本研究的具体目的是:(1)利用分子动力学模拟,量化单分子在水界面上的结合和行为,从小模型溶质到柔性的homo和heterpoly聚合物,以及多肽。(2)量化界面如何调节其附近成对和大量分子的相互作用。(3)建立粗粒度的布朗动力学模拟,以研究界面上的许多粒子组装。从目标1和目标2中获得的有关界面作用的信息将作为BD模拟的重要输入。(4)探索并量化界面流体流动和变形对结构、装配过程和装配结构流动特性的影响。智力优势:尽管从实验和理论的角度来看,界面上的水是一个非常活跃的研究领域,但对水的改变性质如何影响界面上水介导的相互作用的理解确实处于起步阶段。这项工作有望通过提供这种分子水平的理解,并在更大的长度和时间尺度上揭示其对界面介导组装的影响,从而开辟新天地。我们小组的重要初步工作和来自许多不同小组的关于生物和胶体系统的实验数据指出了水界面在各种基本问题和技术应用中的重要作用。这项工作有可能为解释这些实验结果提供一个框架,使技术应用和新材料开发成为可能。更广泛的影响:界面在生物和纳米系统中无处不在,并且在从分离,涂层到新材料开发的许多技术应用中也起着核心作用。最近的工作强调了界面在成核和加速阿尔茨海默病肽纤维形成中的作用。该项目将影响对许多自然过程的理解,并增强我们设计基于界面自组装的新技术的能力。这项研究与教育和推广方面的重大努力相结合。这包括本科生参与研究,激励代表性不足的群体进入科学和工程领域,通过伦斯勒的两个不同项目,新视野数学、工程、技术和科学项目和分子馆来实现。PI是大获成功的“分子计划”(去年12月上映的IMAX电影)的共同负责人。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shekhar Garde其他文献

The Effects of Ligand Structure on Protein-Multimodal Ligand Interactions
  • DOI:
    10.1016/j.bpj.2018.11.2579
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Camille Bilodeau;Edmond Y. Lau;Steve Cramer;Shekhar Garde
  • 通讯作者:
    Shekhar Garde
Sticky when dry
干后发粘
  • DOI:
    10.1038/s41557-020-0498-0
  • 发表时间:
    2020-06-26
  • 期刊:
  • 影响因子:
    20.200
  • 作者:
    Shekhar Garde
  • 通讯作者:
    Shekhar Garde
Hydrophobic interactions in context
在情境中的疏水相互作用
  • DOI:
    10.1038/517277a
  • 发表时间:
    2015-01-14
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Shekhar Garde
  • 通讯作者:
    Shekhar Garde

Shekhar Garde的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shekhar Garde', 18)}}的其他基金

Enhancing Protein Stability and Function by Confinement in Nanoporous Materials: Fundamental Understanding Using Experiments and Simulations
通过纳米多孔材料的限制增强蛋白质稳定性和功能:通过实验和模拟获得基本理解
  • 批准号:
    0967937
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Self-Assembly Through Water-Mediated Interactions: A New Statistical Thermodynamics and Simulations Approach
职业:通过水介导的相互作用进行自组装:一种新的统计热力学和模拟方法
  • 批准号:
    0134023
  • 财政年份:
    2001
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

ENKD1在纺锤体定向中的作用及分子机制
  • 批准号:
    32000490
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
肌球蛋白18B通过影响微丝应力纤维组装调控肿瘤细胞迁移的机制研究
  • 批准号:
    31970660
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
  • 批准号:
    21171046
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
嵌段共聚物多级自组装的多尺度模拟
  • 批准号:
    20974040
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
早型星系的测光研究
  • 批准号:
    10973011
  • 批准年份:
    2009
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
"锁住"的金属中心手性-手性笼络合物的动态CD光谱研究与应用开发
  • 批准号:
    20973136
  • 批准年份:
    2009
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
功能有机配体新颖设计与有机金属超分子导向组装
  • 批准号:
    20772152
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Ion mediated self-assembly of nanoparticles to develop nanoelectrodes
离子介导的纳米颗粒自组装开发纳米电极
  • 批准号:
    RGPIN-2017-04210
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Ion mediated self-assembly of nanoparticles to develop nanoelectrodes
离子介导的纳米颗粒自组装开发纳米电极
  • 批准号:
    RGPIN-2017-04210
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Ion mediated self-assembly of nanoparticles to develop nanoelectrodes
离子介导的纳米颗粒自组装开发纳米电极
  • 批准号:
    RGPIN-2017-04210
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Ion mediated self-assembly of nanoparticles to develop nanoelectrodes
离子介导的纳米颗粒自组装开发纳米电极
  • 批准号:
    RGPIN-2017-04210
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Ion mediated self-assembly of nanoparticles to develop nanoelectrodes
离子介导的纳米颗粒自组装开发纳米电极
  • 批准号:
    RGPIN-2017-04210
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Molecular Packing of Pi-Conjugated Polymers through Fused Hydrogen Bond-mediated Self-assembly
职业:通过熔融氢键介导的自组装进行 Pi 共轭聚合物的分子堆积
  • 批准号:
    1554851
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Mechanisms of self-assembly temperature-sensitive polymers forenhanced rAAV-mediated gene transfer into human mesenchymalstem cells
自组装温度敏感聚合物增强rAAV介导的基因转移至人间充质干细胞的机制
  • 批准号:
    288014206
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grants
Multimodality Self-Assembling and Disassembling Nanoparticles
多模态自组装和拆卸纳米颗粒
  • 批准号:
    8961573
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
INSPIRE Track 1: Exploring New Route of Optically Mediated Self-Assembly: Final Material Properties Determine Its Structures
INSPIRE 轨道 1:探索光介导自组装的新途径:最终材料特性决定其结构
  • 批准号:
    1344290
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Mineral Surface-Mediated Processes in Protocell Evolution: Membrane Self-Assembly and Emergence of Energy Transduction
原始细胞进化中矿物表面介导的过程:膜自组装和能量转换的出现
  • 批准号:
    1251479
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了