Equilibria, Stability, Oscillations, Chaos, and Transients in Re-entrant Lines

重入线中的平衡、稳定性、振荡、混沌和瞬变

基本信息

项目摘要

This research project is devoted to performance analysis and improvement of production systems widely used in semiconductor manufacturing - the re-entrant lines. It is universally accepted that performance of re-entrant lines is characterized by large variability and oscillations of the throughput (TP) and work-in-process (WIP). This leads to performance degradation and long and unpredictable production cycle time. At present, no rigorous explanations of these phenomena are available, and the attempts to combat them are far from being successful. The research is intended to develop a theory that explains fundamental reasons for these phenomena and provide techniques for their alleviation. The approach is based on the methods of nonlinear dynamics. Specifically, the project will investigate steady states of re-entrant lines, their (Lyapunov) stability properties, periodic and chaotic oscillations, and transient behavior (i.e., the processes of convergence to steady states after machine breakdowns). As a result, the project will provide analytical tools for investigating the performance of re-entrant lines, including TP and WIP variability, and offer quantitative methods and qualitative insights that can be used by production personnel to mitigate the undesirable dynamic phenomena.The broader impact of this research will be attained through industrial short courses to be offered by the PI at semiconductor manufacturing plants. These courses will present the results of this research in the format appropriate for factory floor applications. The PI has been offering similar courses in the automotive industry for over ten years, where the results of prior NSF-supported research on serial lines and assembly systems have been presented. As an outcome, some of these results have been incorporated in standard operating procedures at several automotive plants and led to a substantial performance improvement. Similar outcomes are expected to be obtained in the semiconductor industry as well.
本研究项目致力于半导体制造中广泛使用的生产系统--再入生产线的性能分析和改进。人们普遍认为,可再入生产线的性能特征是吞吐量(TP)和在制品(WIP)的大波动和振荡。这会导致性能下降和漫长且不可预测的生产周期时间。目前,对这些现象没有严格的解释,打击这些现象的努力也远未成功。这项研究旨在发展一种理论,解释这些现象的根本原因,并提供缓解这些现象的技术。该方法基于非线性动力学方法。具体地说,该项目将研究可再入生产线的稳态、其(Lyapunov)稳定性、周期和混沌振荡以及暂态行为(即机器故障后收敛到稳态的过程)。因此,该项目将为调查可再入生产线的性能提供分析工具,包括TP和WIP变异性,并提供可供生产人员使用的定量方法和定性见解,以减轻不良动态现象。这项研究的更广泛影响将通过半导体制造工厂的PI提供的工业短期课程来实现。这些课程将以适合工厂现场应用的格式介绍这项研究的结果。十多年来,PI一直在汽车行业提供类似的课程,其中展示了之前由NSF支持的关于串行线和装配系统的研究结果。结果,这些成果中的一些已被纳入几家汽车工厂的标准操作程序,并导致了显著的性能改进。预计半导体行业也将获得类似的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Semyon Meerkov其他文献

Semyon Meerkov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Semyon Meerkov', 18)}}的其他基金

GOALI: Transients of Production Systems: Theory and Applications for Real-Time Productivity Improvement
GOALI:生产系统的瞬态:实时生产力提高的理论与应用
  • 批准号:
    0758259
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
GOALI: Quantitative Methods for Designing Lean Buffering in Production Systems: Theory and Applications
GOALI:生产系统中精益缓冲设计的定量方法:理论与应用
  • 批准号:
    0245377
  • 财政年份:
    2003
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Feedforward Control of Data Rate in Wireless Networks
无线网络中数据速率的前馈控制
  • 批准号:
    0106716
  • 财政年份:
    2001
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Due-Time Performance in Production Systems with Finished Good Buffers: A Systems Approach
具有成品良好缓冲区的生产系统的到期性能:系统方法
  • 批准号:
    9820580
  • 财政年份:
    1999
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
A System Theory for Production Lines: Improvability
生产线的系统理论:可改进性
  • 批准号:
    9531694
  • 财政年份:
    1996
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Asymptotically Reliable Serial Production Lines: A System-Theoretic Approach
渐近可靠的串行生产线:系统理论方法
  • 批准号:
    9105086
  • 财政年份:
    1991
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Dynamic Analysis and Design of Decentralized Access ControlProtocols in Collision Channels
冲突通道中分散访问控制协议的动态分析与设计
  • 批准号:
    8503031
  • 财政年份:
    1985
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Strongly Decentralized Control: Theory and Applications to Communication Networks
强分散控制:通信网络的理论与应用
  • 批准号:
    8116157
  • 财政年份:
    1982
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

随机激励下多稳态系统的临界过渡识别及Basin Stability分析
  • 批准号:
    11872305
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spectral Stability and Oscillations of Dynamical Systems, Boltzmann-Like Models
动力系统的谱稳定性和振荡,类玻尔兹曼模型
  • 批准号:
    1910820
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Stability and Oscillations in Mathematical Models of Neural Systems
神经系统数学模型的稳定性和振荡
  • 批准号:
    171089-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
Developmental changes in lateral dominanance in single-leg stance stability during floor oscillations at various frequencies
不同频率地板振荡期间单腿站立稳定性横向优势的发育变化
  • 批准号:
    15K07245
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability and Oscillations in Mathematical Models of Neural Systems
神经系统数学模型的稳定性和振荡
  • 批准号:
    171089-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
Stability and Oscillations in Mathematical Models of Neural Systems
神经系统数学模型的稳定性和振荡
  • 批准号:
    171089-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
Stability and Oscillations in Mathematical Models of Neural Systems
神经系统数学模型的稳定性和振荡
  • 批准号:
    171089-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
Oscillations and stability of magnetized neutron stars
磁化中子星的振荡和稳定性
  • 批准号:
    24540245
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability and Oscillations in Mathematical Models of Neural Systems
神经系统数学模型的稳定性和振荡
  • 批准号:
    171089-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
Stability and oscillations for differential equations with state-dependent delay modelling structured populations
具有状态相关延迟建模结构化总体的微分方程的稳定性和振荡
  • 批准号:
    214819831
  • 财政年份:
    2012
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grants
WORKSHOP: Resonance oscillations and stability of nonsmooth systems
研讨会:非光滑系统的共振和稳定性
  • 批准号:
    EP/H000577/1
  • 财政年份:
    2009
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了