RI: Medium: Collaborative Research: Graph Cut Algorithms for Domain-specific Higher Order Priors
RI:中:协作研究:特定领域高阶先验的图割算法
基本信息
- 批准号:1161860
- 负责人:
- 金额:$ 41.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optimization is a powerful paradigm for expressing and solving a variety of imaging problems. Modern optimization methods have had considerable success on problems that involve interactions between pairs of pixels. This has lead to important advances, but many imaging problems clearly require explicit modeling of higher-order interactions. This project is addressing this challenge through a close collaboration between researchers with expertise in graph algorithms and computer vision. The project is focused on two core applications: MRI image reconstruction and boundary detection in natural images. Besides their innate interest, these applications are closely related to other important imaging problems such as fMRI distortion correction, super-resolution, angiography and road detection.Optimization problems with high-order interactions are inherently difficult from a computational point of view. The computational complexity can be reduced for problems with specific properties. By identifying common properties in many important imaging problems it is possible to design powerful optimization methods that are broadly applicable. The project is bringing together researchers in computer vision and algorithms. The collaboration is leading to new algorithms that are of broad interest to the computer vision and imaging communities. These algorithms have the potential to transform the way that several important classes of problems are solved. All of the algorithms being developed are being carefully evaluated, with their implementations made widely available on a web repository. Dissemination of the ideas is facilitated by workshops and mini-courses being organized at Brown, Cornell and Rutgers.
优化是表达和解决各种成像问题的强大范例。现代优化方法在涉及像素对之间相互作用的问题上取得了相当大的成功。这导致了重要的进展,但许多成像问题显然需要明确的高阶相互作用的建模。该项目通过图形算法和计算机视觉方面的研究人员之间的密切合作来解决这一挑战。该项目主要关注两个核心应用:MRI图像重建和自然图像的边界检测。除了它们固有的兴趣之外,这些应用与其他重要的成像问题密切相关,如fMRI畸变校正、超分辨率、血管造影和道路检测。从计算的角度来看,具有高阶相互作用的优化问题本质上是困难的。对于具有特定性质的问题,可以降低计算复杂度。通过识别许多重要成像问题的共同属性,可以设计出广泛适用的强大优化方法。该项目汇集了计算机视觉和算法方面的研究人员。这一合作将带来计算机视觉和成像社区广泛关注的新算法。这些算法有可能改变几类重要问题的解决方式。所有正在开发的算法都经过仔细评估,它们的实现在web存储库中广泛可用。布朗大学、康奈尔大学和罗格斯大学组织的研讨会和迷你课程促进了这些想法的传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramin Zabih其他文献
Ramin Zabih的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramin Zabih', 18)}}的其他基金
Frameworks: arXiv as an accessible large-scale open research platform
框架:arXiv 作为一个可访问的大型开放研究平台
- 批准号:
2311521 - 财政年份:2024
- 资助金额:
$ 41.55万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Structured Nearest Neighbor Search in High Dimensions
BIGDATA:F:DKA:协作研究:高维结构化最近邻搜索
- 批准号:
1447473 - 财政年份:2015
- 资助金额:
$ 41.55万 - 项目类别:
Standard Grant
RI-Medium: Collaborative Research: Graph Cut Algorithms for Linear Inverse Systems
RI-Medium:协作研究:线性逆系统的图割算法
- 批准号:
0803705 - 财政年份:2008
- 资助金额:
$ 41.55万 - 项目类别:
Standard Grant
Dynamic Contextual Recognition of Moving Objects
移动物体的动态上下文识别
- 批准号:
9900115 - 财政年份:1999
- 资助金额:
$ 41.55万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 41.55万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 41.55万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 41.55万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 41.55万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 41.55万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 41.55万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 41.55万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 41.55万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 41.55万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 41.55万 - 项目类别:
Continuing Grant