Simulation Optimization: A Martingale-based Approach
仿真优化:基于鞅的方法
基本信息
- 批准号:1161965
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project aims to investigate new approaches to solve large-scale simulation optimization problems. The resulting methodology of this project will be used to efficiently solve families of simulation optimization problems in both discrete and continuous settings, and have applications to a variety of domains such as manufacturing systems, supply chain, healthcare and enterprise systems. The research targets at two fundamental challenges in simulation optimization: 1) identify specific probabilistic structures that allow us to improve the search efficiency, and 2) to measure quality of the current solution obtained when little information on the objective bound is provided. Currently, the majority of the research effort in the field has been devoted to building heuristics. Very few theoretical results have been established, however, addressing the underlying mathematical structure. This research project seeks to build a specific yet widely applicable theoretical condition for simulation optimization algorithms to quickly converge, while at the same time identify, with little bounding information but a reasonably higher level confidence, the distance between the global optimum to current solution obtained.If successful, the new methodology and the resulting algorithms will have broad applicability in solving large-scale simulation optimization problems in domains such as manufacturing, supply chain and enterprise systems. The ideas resulting from this project will be disseminated through publications, software development, and conference participation at both national and international level. This research project will also be closely integrated with the education and training of engineering students by incorporating new developments into the undergraduate and graduate optimization courses taught by PI. Finally, the martingale method is expected to have a broader impact in the research community by stimulating further discussion and study of the embedded stochastic processes in simulation optimization.
本研究项目旨在探索解决大规模仿真优化问题的新方法。该项目的最终方法将用于有效地解决离散和连续环境中的仿真优化问题,并应用于制造系统、供应链、医疗保健和企业系统等各个领域。该研究针对模拟优化中的两个基本挑战:1)识别特定的概率结构,使我们能够提高搜索效率,以及2)当提供很少的关于目标界限的信息时,测量当前解的质量。目前,该领域的大部分研究工作都致力于建立电子学。然而,很少有理论结果被建立,解决了基本的数学结构。该研究项目旨在为仿真优化算法建立一个特定但广泛适用的理论条件,以快速收敛,同时在几乎没有边界信息但具有合理的较高置信度的情况下识别全局最优值与当前解之间的距离。如果成功,新的方法和所得到的算法将在解决诸如制造领域的大规模仿真优化问题中具有广泛的适用性,供应链和企业系统。将通过出版物、软件开发和参加国家和国际一级的会议来传播该项目产生的想法。该研究项目还将通过将新的发展纳入PI教授的本科生和研究生优化课程,与工程专业学生的教育和培训紧密结合。最后,鞅方法有望在研究界产生更广泛的影响,通过激发进一步的讨论和研究嵌入随机过程的仿真优化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leyuan Shi其他文献
Machine Learning for the Prediction of Organ Damage from Cancer Radiotherapy
机器学习用于预测癌症放射治疗造成的器官损伤
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
H. Zhang;R. Meyer;W. D'Souza;Leyuan Shi - 通讯作者:
Leyuan Shi
A harmony search-based memetic optimization model for integrated production and transportation scheduling in MTO manufacturing
MTO制造中基于和谐搜索的模因优化模型,用于集成生产和运输调度
- DOI:
10.1016/j.omega.2015.10.012 - 发表时间:
2017 - 期刊:
- 影响因子:6.9
- 作者:
Zhaoxia Guo;Leyuan Shi;Longchao Chen;Yong Liang - 通讯作者:
Yong Liang
Modeling, Control and Optimization of Complex Systems
复杂系统的建模、控制和优化
- DOI:
10.1007/978-1-4615-1139-7 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
W. Gong;Leyuan Shi - 通讯作者:
Leyuan Shi
Minimizing job shop inventory with on-time delivery guarantees
- DOI:
10.1007/s11518-006-0147-1 - 发表时间:
2003-12-01 - 期刊:
- 影响因子:2.000
- 作者:
Leyuan Shi;Yunpeng Pan - 通讯作者:
Yunpeng Pan
Improving discrete event simulation in the emergency department with innovative and robust input analysis tools
使用创新且强大的输入分析工具改进急诊科的离散事件模拟
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Steven Hoerning;Jie Song;Tao Wu;Leyuan Shi - 通讯作者:
Leyuan Shi
Leyuan Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leyuan Shi', 18)}}的其他基金
Data Analytical Approach for Large-scale Optimization
大规模优化的数据分析方法
- 批准号:
1536978 - 财政年份:2015
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
GOALI: Digital Technologies for Manufacturing Production Systems
目标:制造生产系统的数字技术
- 批准号:
1435800 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Support for Student and Postdoc Participation in the 9th IEEE International Conference on Automation Science and Engineering (IEEE CASE 2013)
支持学生和博士后参加第九届IEEE自动化科学与工程国际会议(IEEE CASE 2013)
- 批准号:
1341406 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
I-Corps: Cloud-based Advanced Planning & Scheduling Tools for Manufacturing Systems
I-Corps:基于云的高级规划
- 批准号:
1343665 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Interdisciplinary Center for Radiation Treatment Planning
合作研究:放射治疗规划跨学科中心
- 批准号:
0400294 - 财政年份:2004
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
SGER: A New Direction for Applied Scheduling and Sequencing Research
SGER:应用调度和排序研究的新方向
- 批准号:
0431227 - 财政年份:2004
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
An Evaluation Approach for Flexibility in Manufacturing Enterprises
制造企业柔性评价方法
- 批准号:
0217924 - 财政年份:2002
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
GOALI: Global Meta-Hybrids for Supply Chain Optimization
GOALI:用于供应链优化的全球元混合体
- 批准号:
0100220 - 财政年份:2001
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Workshop on Complex Systems Simulation and Optimization in the Information Age, June 23-24, in Boston, MA
信息时代复杂系统仿真和优化研讨会,6 月 23 日至 24 日,马萨诸塞州波士顿
- 批准号:
0118375 - 财政年份:2001
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Optimal Resource Allocation under Uncertainty
不确定性下的最优资源配置
- 批准号:
9713647 - 财政年份:1997
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
- 批准号:
AH/Z000041/1 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Research Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CAS: Optimization of CO2 to Methanol Production through Rapid Nanoparticle Synthesis Utilizing MOF Thin Films and Mechanistic Studies.
CAS:利用 MOF 薄膜和机理研究,通过快速纳米粒子合成优化 CO2 生产甲醇。
- 批准号:
2349338 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
- 批准号:
2340519 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant