Scalable Capillary-Driven Assembly of Asymmetric Nanoparticles via Inkjet Printing

通过喷墨打印可扩展毛细管驱动的不对称纳米粒子组装

基本信息

  • 批准号:
    1200385
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2015-12-31
  • 项目状态:
    已结题

项目摘要

This grant provides funding for the investigation of capillary-driven self-assembly of asymmetric nanoparticles in inkjet printing of colloidal suspensions for scalable nanomanufacturing. Low-cost inkjet printing for the delivery of solution-processed functional materials onto flexible substrates has become a revolutionary technology for roll-to-roll processing of electronics and photovoltaics. However, the current technology is incapable of producing nanosized features and well-controlled patterns due to the well-known coffee-stain effect. Asymmetric nanoparticles can break the symmetry during capillary-driven self-assembly and may lead to improved feature resolution during printing. Janus nanoparticles (JNPs), which refer to colloidal particles with two regions of different surface chemical composition, will be used in this study to facilitate particle assembly due to the orientation-dependent interactions. The project that combines novel nanoparticle synthesis, multiscale modeling, in-situ observation, and advanced characterization will focus on the fundamental understanding of orientation-dependent interactions of JNPs with a moving contact line and a liquid-vapor interface away from equilibrium. If successful, the results of this research will lead to several technology advancements. Using JNPs as solid surfactants, the deposition of JNPs can be better controlled to avoid coffee-ring patterns commonly encountered in inkjet-printed structures. Using JNPs as tunable building blocks will lead to a large class of dynamically switchable micro-devices and smart surfaces. The proposed work will help establish important correlations between the assembly and deposition of JNP-based inks from evaporating colloidal drops and thin films, as well as the JNP design, ink formulations, processing conditions, and substrate properties. Such knowledge will potentially enable environmentally-benign, large-area inkjet printing, spray deposition, and slot-die coating processes for high-throughput production of next generation flexible electronics. This project will build an exciting interdisciplinary collaboration, enable new course materials, and directly benefit undergraduate researchers and K-12 teachers via Drexel?s REU and RET sites, as well as women and under-represented minority students.
这项拨款为研究毛细管驱动的不对称纳米粒子自组装在喷墨打印胶体悬浮液中的可扩展纳米制造提供了资金。低成本的喷墨印刷将溶液加工的功能材料输送到柔性基材上,已经成为电子和光伏卷对卷加工的革命性技术。然而,由于众所周知的咖啡渍效应,目前的技术无法产生纳米级的特征和良好控制的图案。不对称纳米颗粒可以在毛细管驱动的自组装过程中打破对称性,从而提高打印过程中的特征分辨率。两面纳米粒子(Janus nanoparticles, JNPs)是指具有两个不同表面化学成分区域的胶体粒子,在本研究中,由于取向依赖的相互作用,它将被用于促进粒子组装。该项目结合了新型纳米粒子合成、多尺度建模、原位观察和高级表征,将重点放在对JNPs与移动接触线和远离平衡的液-气界面的方向依赖相互作用的基本理解上。如果成功,这项研究的结果将导致几项技术的进步。使用JNPs作为固体表面活性剂,可以更好地控制JNPs的沉积,以避免喷墨打印结构中常见的咖啡环图案。使用JNPs作为可调的构建块将导致大量可动态切换的微型设备和智能表面。所提出的工作将有助于从蒸发胶体滴和薄膜中建立基于JNP的油墨的组装和沉积之间的重要相关性,以及JNP设计,油墨配方,加工条件和衬底性质。这些知识将潜在地使环保,大面积喷墨印刷,喷涂沉积和槽模涂层工艺用于下一代柔性电子产品的高通量生产。该项目将建立一个令人兴奋的跨学科合作,使新的课程材料,并直接受益本科研究人员和K-12教师通过德雷克塞尔?REU和RET网站,以及女性和代表性不足的少数民族学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying Sun其他文献

Carboxylesterase from Spodoptera Litura: Immobilization and use for the Degradation of Pesticides
来自斜纹夜蛾的羧酸酯酶:固定化及其用于农药降解的用途
  • DOI:
    10.1016/j.proenv.2013.04.084
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guangyu Zhao;Yuanqing Li;Jinli Huang;Ying Sun
  • 通讯作者:
    Ying Sun
Optical Performance, Thermal Stability, and Failure Analysis of the WNx-Si3N4 Multilayer Solar Selective Absorbing Coatings
WNx-Si3N4 多层太阳能选择性吸收涂层的光学性能、热稳定性和失效分析
  • DOI:
    10.1021/acsaem.1c03373
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Binghui Sun;Lei Wang;Ying Sun;Jie Ren;Yingxin Yang;Huan Liu;Dongdong Liang;Aoyu Li;Cong Wang
  • 通讯作者:
    Cong Wang
Asymmetric Synthesis of Hispidanin A and the Related Diterpenoids.
Hispidanin A 和相关二萜的不对称合成。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei Cao;Heping Deng;Ying Sun;Bo Liu;Song Qin
  • 通讯作者:
    Song Qin
Simultaneous quantitation of cytokinin bases and their glycoconjugates with stable isotope labelling ultrahigh performance liquid chromatography mass spectrometry
使用稳定同位素标记超高效液相色谱质谱法同时定量细胞分裂素碱基及其糖缀合物
  • DOI:
    10.1016/j.chroma.2020.461782
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Xin Zhou;Ruo-Qi Li;Cong Wang;Xiao-Xia Ma;Ying Sun;Wen-Xuan Song;Xue-Bing Wei;Dong-hua Li;Xiao Ma;Ren-Qi Wang
  • 通讯作者:
    Ren-Qi Wang
Epidemic Amplifier Detection: Finding High-Risk Locations in COVID-19 Cases' Location Sequences via Multi-task Learning
流行病放大器检测:通过多任务学习在COVID-19病例位置序列中查找高风险位置

Ying Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying Sun', 18)}}的其他基金

REU Site: Research Experiences for American Leadership of Industry with Zero Emissions by 2050 (REALIZE-2050)
REU 网站:2050 年美国零排放工业领先地位的研究经验 (REALIZE-2050)
  • 批准号:
    2349580
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
  • 批准号:
    2323023
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
The Role of Interstitial Air Layer in Drop Impact on Liquid-infused Surfaces
间隙空气层在液体注入表面的液滴冲击中的作用
  • 批准号:
    2300317
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Effects of electrode microstructure and Li2O2 growth on Li-air battery performance
电极微观结构和Li2O2生长对锂空气电池性能的影响
  • 批准号:
    2310530
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
MSA: Dynamics of Chlorophyll Fluorescence and Its Relationship with Photosynthesis from Leaf to Continent: Theory Meets Data
MSA:叶绿素荧光动力学及其与从叶子到大陆的光合作用的关系:理论与数据的结合
  • 批准号:
    1926488
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Intergovernmental Personnel Award
政府间人才奖
  • 批准号:
    1940923
  • 财政年份:
    2019
  • 资助金额:
    $ 25万
  • 项目类别:
    Intergovernmental Personnel Award
Effects of electrode microstructure and Li2O2 growth on Li-air battery performance
电极微观结构和Li2O2生长对锂空气电池性能的影响
  • 批准号:
    1804374
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
The Role of Interstitial Air Layer in Drop Impact on Liquid-infused Surfaces
间隙空气层在液体注入表面的液滴冲击中的作用
  • 批准号:
    1705745
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Shear Dependent Reaction Kinetics in Particulate Electrochemical Energy Storage
EAGER:合作研究:颗粒电化学储能中的剪切相关反应动力学
  • 批准号:
    1318341
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Multi-scale Study of Coupled Reaction and Wetting in Droplet Spreading
液滴铺展中的耦合反应和润湿的多尺度研究
  • 批准号:
    1104835
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似海外基金

Transparent thin film for capillary driven microfluidic devices
用于毛细管驱动微流体装置的透明薄膜
  • 批准号:
    23K19273
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Study on low divergence laser-driven ion beam generation using capillary array target
利用毛细管阵列靶产生低发散激光驱动离子束的研究
  • 批准号:
    23K11716
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Flow control in textile-based capillary-driven microfluidic platforms
基于织物的毛细管驱动微流体平台中的流量控制
  • 批准号:
    RGPIN-2020-07071
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Flow control in textile-based capillary-driven microfluidic platforms
基于织物的毛细管驱动微流体平台中的流量控制
  • 批准号:
    RGPIN-2020-07071
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Study on Capillary Phenomena of Immiscible Fluids towards Autonomously Driven Droplet Microfluidics
自主驱动液滴微流控不混溶流体的毛细管现象研究
  • 批准号:
    20J00716
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAS: Acoustically Driven, Voltage-Free Spray Interface to Couple Capillary Electrophoresis and Mass Spectrometry
CAS:声学驱动、无电压喷雾接口,用于耦合毛细管电泳和质谱分析
  • 批准号:
    2004021
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Paper-based and capillary-driven microfluidics platforms for allergy tests
用于过敏测试的纸基和毛细管驱动的微流体平台
  • 批准号:
    516525-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Collaborative Research and Development Grants
Flow control in textile-based capillary-driven microfluidic platforms
基于织物的毛细管驱动微流体平台中的流量控制
  • 批准号:
    RGPIN-2020-07071
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Grants Program - Individual
Paper-based and capillary-driven microfluidics platforms for allergy tests
用于过敏测试的纸基和毛细管驱动的微流体平台
  • 批准号:
    516525-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Collaborative Research and Development Grants
Paper-based and capillary-driven microfluidics platforms for allergy tests
用于过敏测试的纸基和毛细管驱动的微流体平台
  • 批准号:
    516525-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了