EAGER: Collaborative Research: Shear Dependent Reaction Kinetics in Particulate Electrochemical Energy Storage
EAGER:合作研究:颗粒电化学储能中的剪切相关反应动力学
基本信息
- 批准号:1318341
- 负责人:
- 金额:$ 4.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-02-15 至 2014-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Lithium-ion batteries are considered the pre-eminent storage device for portable electronics, emerging green technologies, and electric vehicles. However, additives that are used to boost electronic and ionic conductivities of the electrode materials comprise about 1/3 of the battery volume, undermining both energy and power density of the cell, as well as impairing the cycle life of the system. Redox flow batteries on the other hand have shown great advantages on their scale-up flexibility, but their energy density is limited by the solubility of metal ion redox couples in liquid solvents. Recently, a new concept of flowing ion-storing semi-solid electroactive materials into and from a battery assembly to create a high energy and power density redox flow battery has been proposed. Realizing the tremendous potential of this new concept requires a fundamental understanding of the effects of moving electrode particles and flowing electrolytes on ion/charge transport as well as charging/discharging kinetics compared with those in static battery configurations. This collaborative project brings together Dr. Steingart specializing on electrochemical energy storage systems and Dr. Sun on complex fluids physics, integrating expertise on rheology, reaction chemistry, materials processing, and battery performance for the realization of semi- solid flow battery concept. The objective of this EAGER project is to create a baseline methodology for characterizing and predicting the electrochemical-mechanical coupling behavior of large mass fraction flowing slurry electrodes through integrated modeling and experiments.Intellectual MeritIn the semi-solid flow battery configuration, positive and/or negative electrode slurries are usually non- Newtonian and their stability is extremely challenging. Using an optically transparent flow cell and rate shear viscometry, the effect of interpacticle packing and flow on conductivity, and reaction rate are directly determined. By running conductivity experiments in parallel with overall reaction experiments, the PIs can decouple the electrical conductivity. Through the insights provided by our particle transport mechanism-resolved, electrochemistry-coupled model, PIs will be able to understand the coupled behavior of flow, viscosity, ionic conductivity, electrical conductivity, particle size, particle size distribution and electrode kinetics in semi-solid electrode flow systems.Broader ImpactsThe development of more cost-effective, long lasting, and high energy/power-density battery solution is a crucial step toward the electrification of the nation?s personal transportation and more stable and efficient electrical grids. Semi-solid flow batteries enable high energy density storage while removing lifetime concerns from the reacting material. This project builds a new exciting collaboration between chemical and mechanical engineers at Princeton and Drexel to enable efficient, reliable flow batteries. Both graduate and undergraduate students will benefit from the interdisciplinary nature of the proposed project.
锂离子电池被认为是便携式电子产品、新兴绿色技术和电动汽车的卓越存储设备。然而,用于提高电极材料的电子和离子电导率的添加剂占电池体积的约1/3,从而破坏了电池的能量和功率密度,并损害了系统的循环寿命。另一方面,氧化还原液流电池在其放大灵活性方面显示出巨大的优势,但其能量密度受到金属离子氧化还原对在液体溶剂中的溶解度的限制。最近,已经提出了使离子存储半固体电活性材料流入和流出电池组件以产生高能量和功率密度氧化还原液流电池的新概念。实现这一新概念的巨大潜力,需要一个基本的理解的影响,移动电极颗粒和流动的电解质离子/电荷传输以及充电/放电动力学相比,在静态电池配置。 该合作项目汇集了专门从事电化学储能系统的Steingart博士和复杂流体物理学的Sun博士,整合了流变学,反应化学,材料加工和电池性能方面的专业知识,以实现半固体液流电池概念。该EAGER项目的目标是通过集成建模和实验,创建一种用于表征和预测大质量分数流动浆料电极的电化学-机械耦合行为的基线方法。智力优势在半固态液流电池配置中,正极和/或负极浆料通常是非牛顿的,其稳定性极具挑战性。 使用光学透明的流动池和速率剪切粘度计,粒子间的填充和流动对电导率和反应速率的影响直接确定。通过与整体反应实验并行运行电导率实验,PI可以解耦电导率。 通过我们的颗粒传输机制解析的电化学耦合模型提供的见解,PI将能够理解半固态电极流动系统中流动、粘度、离子电导率、电导率、颗粒尺寸、颗粒尺寸分布和电极动力学的耦合行为。更广泛的影响开发更具成本效益、持久、高能量/功率密度电池解决方案是迈向国家电气化的关键一步?的个人交通和更稳定和有效的电网。半固体液流电池能够实现高能量密度存储,同时消除了反应材料的寿命问题。 该项目在普林斯顿大学和德雷克塞尔大学的化学和机械工程师之间建立了一个新的令人兴奋的合作,以实现高效,可靠的液流电池。研究生和本科生都将受益于拟议项目的跨学科性质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Sun其他文献
Carboxylesterase from Spodoptera Litura: Immobilization and use for the Degradation of Pesticides
来自斜纹夜蛾的羧酸酯酶:固定化及其用于农药降解的用途
- DOI:
10.1016/j.proenv.2013.04.084 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Guangyu Zhao;Yuanqing Li;Jinli Huang;Ying Sun - 通讯作者:
Ying Sun
Optical Performance, Thermal Stability, and Failure Analysis of the WNx-Si3N4 Multilayer Solar Selective Absorbing Coatings
WNx-Si3N4 多层太阳能选择性吸收涂层的光学性能、热稳定性和失效分析
- DOI:
10.1021/acsaem.1c03373 - 发表时间:
2022 - 期刊:
- 影响因子:6.4
- 作者:
Binghui Sun;Lei Wang;Ying Sun;Jie Ren;Yingxin Yang;Huan Liu;Dongdong Liang;Aoyu Li;Cong Wang - 通讯作者:
Cong Wang
Asymmetric Synthesis of Hispidanin A and the Related Diterpenoids.
Hispidanin A 和相关二萜的不对称合成。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Wei Cao;Heping Deng;Ying Sun;Bo Liu;Song Qin - 通讯作者:
Song Qin
Simultaneous quantitation of cytokinin bases and their glycoconjugates with stable isotope labelling ultrahigh performance liquid chromatography mass spectrometry
使用稳定同位素标记超高效液相色谱质谱法同时定量细胞分裂素碱基及其糖缀合物
- DOI:
10.1016/j.chroma.2020.461782 - 发表时间:
2020 - 期刊:
- 影响因子:4.1
- 作者:
Xin Zhou;Ruo-Qi Li;Cong Wang;Xiao-Xia Ma;Ying Sun;Wen-Xuan Song;Xue-Bing Wei;Dong-hua Li;Xiao Ma;Ren-Qi Wang - 通讯作者:
Ren-Qi Wang
Epidemic Amplifier Detection: Finding High-Risk Locations in COVID-19 Cases' Location Sequences via Multi-task Learning
流行病放大器检测:通过多任务学习在COVID-19病例位置序列中查找高风险位置
- DOI:
10.1145/3589132.3625632 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yue Hu;Xiaoli Wang;Huimin Ren;Tianfu He;Tan Tang;Huajun He;Chuishi Meng;Boyang Han;J. Bao;Ying Sun;Gang Li;Quanyi Wang;Peng Yang;Yu Zheng - 通讯作者:
Yu Zheng
Ying Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Sun', 18)}}的其他基金
REU Site: Research Experiences for American Leadership of Industry with Zero Emissions by 2050 (REALIZE-2050)
REU 网站:2050 年美国零排放工业领先地位的研究经验 (REALIZE-2050)
- 批准号:
2349580 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323023 - 财政年份:2023
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
The Role of Interstitial Air Layer in Drop Impact on Liquid-infused Surfaces
间隙空气层在液体注入表面的液滴冲击中的作用
- 批准号:
2300317 - 财政年份:2022
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Effects of electrode microstructure and Li2O2 growth on Li-air battery performance
电极微观结构和Li2O2生长对锂空气电池性能的影响
- 批准号:
2310530 - 财政年份:2022
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
MSA: Dynamics of Chlorophyll Fluorescence and Its Relationship with Photosynthesis from Leaf to Continent: Theory Meets Data
MSA:叶绿素荧光动力学及其与从叶子到大陆的光合作用的关系:理论与数据的结合
- 批准号:
1926488 - 财政年份:2019
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Intergovernmental Personnel Award
政府间人才奖
- 批准号:
1940923 - 财政年份:2019
- 资助金额:
$ 4.2万 - 项目类别:
Intergovernmental Personnel Award
Effects of electrode microstructure and Li2O2 growth on Li-air battery performance
电极微观结构和Li2O2生长对锂空气电池性能的影响
- 批准号:
1804374 - 财政年份:2018
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
The Role of Interstitial Air Layer in Drop Impact on Liquid-infused Surfaces
间隙空气层在液体注入表面的液滴冲击中的作用
- 批准号:
1705745 - 财政年份:2017
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Scalable Capillary-Driven Assembly of Asymmetric Nanoparticles via Inkjet Printing
通过喷墨打印可扩展毛细管驱动的不对称纳米粒子组装
- 批准号:
1200385 - 财政年份:2012
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Multi-scale Study of Coupled Reaction and Wetting in Droplet Spreading
液滴铺展中的耦合反应和润湿的多尺度研究
- 批准号:
1104835 - 财政年份:2011
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant