Computability and Randomness in Dynamical Systems and Fractal Geometry

动力系统和分形几何中的可计算性和随机性

基本信息

  • 批准号:
    1201263
  • 负责人:
  • 金额:
    $ 9.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

Reimann proposes to investigate interactions between computability theory, dynamical systems, and geometric measure theory. Reimann intends to use concepts from dynamical systems and fractal geometry to study computability theoretic structures, in particular, the set MIN of reals of minimal Turing degree. Being a central object in the study of degrees of unsolvability, minimal degrees have recently exhibited interesting properties with respect to geometric measure theory. An open problem is the determination of the Hausdorff dimension of MIN. This problem is related to questions concerning extraction of randomness, diagonally non-computable functions, and Sacks forcing. It also motivates questions about algorithmic independence of reals, and how effective randomness (with respect to arbitrary measures) behaves under splits and joins. In a second area of investigation, Reimann proposes to study algorithmic reducibilities from the point of view of Borel equivalence relations. In a remarkable confluence of methods from descriptive set theory, ergodic theory, topological dynamics, and other areas, researchers have successfully classified many equivalence relations. Yet most equivalence relations arising from computability theoretic reducibilities have so far resisted complete classification. Reimann intends to investigate LR-equivalence, an equivalence relation of fundamental importance in effective randomness, and also the role uniformity plays in the classification of Borel equivalence relations.Computability and randomness are two of the fundamental ideas that drove the scientific revolutions of the 20th century and changed the way we think about the world. Computability theory concerns itself with trying to understand which problems are solvable by computers. It was developed as a rigorous mathematical discipline in the 1930s through the work of Gödel, Church, Turing and others. Around the same time, Kolmogorov provided the notion of randomness with a solid mathematical foundation in the form of measure theoretic probability. The theory of effective randomness, which brings together probability theory and computability theory, has made it possible to qualitatively and quantitatively study the ways in which the two notions, computability and randomness, delimit and condition each other. It gives a mathematically precise meaning to questions like "Are random processes necessarily uncomputable?" or "If we have access to randomness, can we facilitate computation?" The major objective of the proposed project is to further the study of the interaction between randomness and computability. In one part of the project, this interaction is to be studied with the help of concepts from two other areas of mathematics - geometric measure theory and ergodic theory. In another part, Reimann plans to explore the role computability and randomness play in certain areas of dynamical systems. The latter objective can be seen as a first step of a long-term project - to help pave the way for a better, more exact understanding of the forms in which randomness does occur in this world, through the theory of effective randomness.
Reimann建议研究可计算性理论、动力系统和几何测度理论之间的相互作用。Reimann打算使用动力系统和分形几何的概念来研究可计算性理论结构,特别是最小图灵度的实数集MIN。作为不可解度研究的一个中心对象,极小度最近在几何测度论中表现出了有趣的性质。一个开放的问题是确定的Hausdorff维数的最小值。这个问题涉及到有关提取的随机性,对角不可计算的功能,和萨克斯强迫的问题。它还激发了关于实数的算法独立性的问题,以及在分裂和连接下有效的随机性(相对于任意度量)如何表现。在第二个领域的调查,Reimann建议研究算法的可归约性的角度来看,博雷尔等价关系。从描述集合论、遍历理论、拓扑动力学和其他领域的方法的显著融合中,研究人员已经成功地对许多等价关系进行了分类。然而,大多数等价关系所产生的可计算性理论的可约性,迄今为止,抵制完整的分类。Reimann打算调查LR-等价,一个等价关系的基本重要性,在有效的随机性,也发挥作用的均匀性分类的博雷尔等价relations.Computability和随机性的分类是两个基本的想法,推动了科学革命的20世纪,改变了我们的方式思考世界。可计算性理论关注的是试图理解哪些问题可以用计算机解决。它是在20世纪30年代通过哥德尔、丘奇、图灵和其他人的工作发展起来的一门严格的数学学科。大约在同一时间,哥洛夫提供了概念的随机性与坚实的数学基础的形式措施理论的概率。有效随机性理论将概率论和可计算性理论结合在一起,使得定性和定量地研究可计算性和随机性这两个概念如何相互界定和制约成为可能。它给出了一个数学上精确的含义,如“随机过程必然不可计算吗?或者“如果我们有随机性,我们能促进计算吗?““建议的项目的主要目的是进一步研究随机性和可计算性之间的相互作用。在该项目的一部分,这种相互作用是研究的概念的帮助下,从其他两个领域的数学-几何测度理论和遍历理论。在另一部分中,Reimann计划探索可计算性和随机性在动力系统的某些领域中发挥的作用。后一个目标可以被看作是一个长期项目的第一步--通过有效随机性理论,为更好、更准确地理解随机性在这个世界上发生的形式铺平道路。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jan Reimann其他文献

Application of Symbolic Regression to Electrochemical Impedance Spectroscopy Data for Lubricating Oil Health Evaluation
电化学阻抗谱数据符号回归在润滑油健康评价中的应用
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Byington;Nicholos Mackos;Garrett Argenna;A. Palladino;Jan Reimann;Joel Schmitigal
  • 通讯作者:
    Joel Schmitigal
On Selection Functions that Do Not Preserve Normality
关于不保持正态性的选择函数
  • DOI:
    10.1007/978-3-540-45138-9_54
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Merkle;Jan Reimann
  • 通讯作者:
    Jan Reimann
Finding subsets of positive measure
寻找积极措施的子集
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Kjos;Jan Reimann
  • 通讯作者:
    Jan Reimann
Probability Measures and Effective Randomness
概率测量和有效随机性
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jan Reimann;T. Slaman
  • 通讯作者:
    T. Slaman
Irrationality exponent, Hausdorff dimension and effectivization
  • DOI:
    10.1007/s00605-017-1094-2
  • 发表时间:
    2017-09-11
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Verónica Becher;Jan Reimann;Theodore A. Slaman
  • 通讯作者:
    Theodore A. Slaman

Jan Reimann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jan Reimann', 18)}}的其他基金

Randomness in Recursion Theory and Effective Descriptive Set Theory
递归理论中的随机性和有效描述集合论
  • 批准号:
    0801270
  • 财政年份:
    2008
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: 17th International Conference on Computability, Complexity and Randomness (CCR 2024)
会议:第十七届可计算性、复杂性和随机性国际会议(CCR 2024)
  • 批准号:
    2404023
  • 财政年份:
    2024
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant
Interplay between geometry and randomness in fitness landscapes for expanding populations
人口增长的健身景观中几何与随机性之间的相互作用
  • 批准号:
    EP/X040089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Research Grant
Development of self-organization model and verification of forecast accuracy of Baiu heavy rainfall systems based on the randomness of water content
基于含水量随机性的Baiu暴雨系统自组织模型建立及预报精度验证
  • 批准号:
    22KJ1845
  • 财政年份:
    2023
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
AF: Small: The Power of Randomness in Decision and Verification
AF:小:决策和验证中随机性的力量
  • 批准号:
    2312540
  • 财政年份:
    2023
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant
Randomness in High-Dimensional Combinatorics: Colorings, Robustness, and Statistics
高维组合中的随机性:着色、鲁棒性和统计
  • 批准号:
    2247078
  • 财政年份:
    2023
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Continuing Grant
Robust Quantum Randomness for Industry
工业领域强大的量子随机性
  • 批准号:
    10041956
  • 财政年份:
    2023
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Collaborative R&D
Structure versus Randomness in Algebraic Geometry and Additive Combinatorics
代数几何和加法组合中的结构与随机性
  • 批准号:
    2302988
  • 财政年份:
    2023
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant
Taming the randomness of random lasers with reconfigurable active particle assemblies
利用可重构的活性粒子组件来驯服随机激光器的随机性
  • 批准号:
    2303189
  • 财政年份:
    2023
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant
ASCENT: TUNA: TUnable randomness for NAtural computing
ASCENT:TUNA:TU 无法实现自然计算的随机性
  • 批准号:
    2230963
  • 财政年份:
    2022
  • 资助金额:
    $ 9.17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了