Langlands Duality and Quantum Physics

朗兰兹对偶性和量子物理

基本信息

  • 批准号:
    1201335
  • 负责人:
  • 金额:
    $ 20.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

The Langlands Program was launched by Robert Langlands in the late 1960s with the goal of bringing together number theory and harmonic analysis. These ideas have since propagated to other areas of mathematics, such as algebraic geometry and the representation theory of infinite-dimensional algebras. And in recent works by Witten and others, it was shown that the Langlands duality patterns are closely related to the electro-magnetic duality of Quantum Field Theory. The goals of this project are two-fold. First, it is to develop further the connection between the Langlands Program and the electro-magnetic duality, generalize it to a broader context, and use it to obtain new mathematical results. Second, to study further the geometric trace formulas developed by the PI in collaboration with R. Langlands and B.C. Ngo, and to apply them to the Langlands functoriality conjecture. The two parts of the proposal are interconnected, because these trace formulas are most naturally interpreted in the framework of the categorical Langlands correspondence and electro-magnetic duality.The interdisciplinary nature of this proposal will serve to advance discovery and understanding of models of Quantum Field Theory and at the same time will stimulate the development of the Langlands Program by bringing in new insights from geometry and physics.
朗兰兹计划是由罗伯特·朗兰兹在20世纪60年代末发起的,目的是将数论和谐波分析结合起来。这些思想已经传播到数学的其他领域,如代数几何和无限维代数的表示理论。在Witten等人最近的工作中,证明了朗兰兹对偶模式与量子场论的电磁对偶密切相关。这个项目有两个目标。一是进一步发展朗兰兹纲领与电磁对偶之间的联系,将其推广到更广泛的范围,并利用它来获得新的数学结果。其次,进一步研究PI与R. Langlands和bc . Ngo合作开发的几何迹公式,并将其应用于Langlands泛函猜想。这两部分的建议是相互联系的,因为这些迹公式是最自然的解释在范畴朗兰兹对应和电磁对偶的框架。该提议的跨学科性质将有助于推进量子场论模型的发现和理解,同时将通过从几何和物理学中引入新的见解来刺激朗兰兹计划的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Frenkel其他文献

Equivalence of Two Approaches to Integrable Hierarchies of KdV type
Quantum affine algebras and deformations of the Virasoro and 237-1237-1237-1
  • DOI:
    10.1007/bf02104917
  • 发表时间:
    1996-05-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Edward Frenkel;Nikolai Reshetikhin
  • 通讯作者:
    Nikolai Reshetikhin
Extended Baxter Relations and QQ-Systems for Quantum Affine Algebras
  • DOI:
    10.1007/s00220-024-05051-1
  • 发表时间:
    2024-07-29
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Edward Frenkel;David Hernandez
  • 通讯作者:
    David Hernandez
Mirror Symmetry in Two Steps: A–I–B
Analytic Langlands correspondence for $$PGL_2$$ on $${\mathbb {P}}^1$$ with parabolic structures over local fields
  • DOI:
    10.1007/s00039-022-00603-w
  • 发表时间:
    2022-05-18
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Pavel Etingof;Edward Frenkel;David Kazhdan
  • 通讯作者:
    David Kazhdan

Edward Frenkel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Frenkel', 18)}}的其他基金

Arc Spaces in the Langlands Program and Geometric Representation Theory
朗兰兹纲领和几何表示理论中的弧空间
  • 批准号:
    1601934
  • 财政年份:
    2016
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Standard Grant
Representations of infinite-dimensional Lie algebras and related topics
无限维李代数的表示及相关主题
  • 批准号:
    0303529
  • 财政年份:
    2003
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Continuing Grant
Representations of Infinite-Dimensional Algebras and Related Topics
无限维代数的表示及相关主题
  • 批准号:
    0070874
  • 财政年份:
    2000
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Representations of Infinite-Dimensional Algebras with Applications to Two-Dimensional Quantum Field Theory
数学科学:无限维代数的表示及其在二维量子场论中的应用
  • 批准号:
    9205303
  • 财政年份:
    1992
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Standard Grant

相似海外基金

Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
  • 批准号:
    23K13008
  • 财政年份:
    2023
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Kac-Moody quantum symmetric pairs, KLR algebras and generalized Schur-Weyl duality
Kac-Moody 量子对称对、KLR 代数和广义 Schur-Weyl 对偶性
  • 批准号:
    EP/W022834/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Fellowship
Symplectic duality and quantum cohomology
辛对偶性和量子上同调
  • 批准号:
    569197-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Using duality to investigate the effects of interactions between electrons in topological quantum materials
利用对偶性研究拓扑量子材料中电子之间相互作用的影响
  • 批准号:
    544262-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Using duality to investigate the effects of interactions between electrons in topological quantum materials
利用对偶性研究拓扑量子材料中电子之间相互作用的影响
  • 批准号:
    544262-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Quantum Hamiltonian Duality and Simulation
量子哈密顿对偶性和模拟
  • 批准号:
    2578187
  • 财政年份:
    2020
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Studentship
Representation theory of elliptic quantum groups and symplectic duality
椭圆量子群和辛对偶性的表示论
  • 批准号:
    20K03507
  • 财政年份:
    2020
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Using duality to investigate the effects of interactions between electrons in topological quantum materials
利用对偶性研究拓扑量子材料中电子之间相互作用的影响
  • 批准号:
    544262-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Analysis of Quantum Phenomena Based on the Duality Between Quantisations and Quasiprobabilities
基于量化与准概率之间的对偶性的量子现象分析
  • 批准号:
    18K13468
  • 财政年份:
    2018
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New trends in integrable systems, non-equilibrium, duality and quantum geometry
可积系统、非平衡、对偶性和量子几何的新趋势
  • 批准号:
    18H01141
  • 财政年份:
    2018
  • 资助金额:
    $ 20.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了