IHP: Program in Conformal and Kahler Geometry
IHP:共形和卡勒几何项目
基本信息
- 批准号:1205937
- 负责人:
- 金额:$ 4.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will support a program in the Fall of 2012 at the Institut Henri Poincare in Paris, France, on the theme of Conformal and Kahler geometry. The trimester will begin with two introductory mini-courses followed by the week-long conference Conformal and Kahler Geometry (September 17-21), which will cover the broad mathematical themes of the program: conformal invariants, Poincaré-Einstein metrics, self-duality, nonlinear PDEs in conformal geometry, critical Kahler metrics, and complex Monge-Ampere equations. The other activities throughout the trimester will attempt to elaborate and bring into sharper focus the developments related in the introductory conference. There will be three smaller and more focused workshops later in the term: Geometry and Physics (October 8-12), Geometric PDE (November 5-9), and Recent Developments in Kahler Geometry (December 10-14). These will be accompanied by a series of topical mini-courses. Conformal geometry has its origins in the study of functions of a complex variable in the nineteenth century. Roughly speaking, it is the study of transformations of a space which may distort the measurement of distances, but not how one measures angles. Conformal mappings play a basic role in many applied sciences, and modern conformal geometry has connections to theoretical physics and materials science. Kahler geometry is a branch of complex geometry which also has important ties to physics and many areas of modern geometry. The goals of this program are to provide an overview of the current state of the field in these areas, foster interactions between researchers and educate graduate students and postdoctoral scholars on open problems and recent techniques.
这笔赠款将支持2012年秋季在法国巴黎的亨利·庞加莱研究所开展的一个共形几何和卡勒几何主题的项目。 这三个月将开始两个介绍性的迷你课程,随后为期一周的会议共形和卡勒几何(9月17日至21日),这将涵盖该计划的广泛的数学主题:共形不变量,庞加莱-爱因斯坦度量,自对偶性,共形几何中的非线性偏微分方程,临界卡勒度量和复杂的蒙格-安培方程。 这三个月的其他活动将试图详细阐述介绍性会议中的有关发展,并使其更加突出重点。 本学期晚些时候将有三个更小,更集中的研讨会:几何和物理(10月8日至12日),几何PDE(11月5日至9日)和Kahler几何的最新发展(12月10日至14日)。 同时还将举办一系列专题小型课程。 共形几何起源于世纪对复变函数的研究。 粗略地说,它是对空间变换的研究,它可能会扭曲距离的测量,但不是如何测量角度。 共形映射在许多应用科学中发挥着基础作用,现代共形几何与理论物理学和材料科学有联系。 卡勒几何是复几何的一个分支,它与物理学和现代几何的许多领域都有着重要的联系。该计划的目标是提供该领域在这些领域的现状概述,促进研究人员之间的互动,并教育研究生和博士后学者对开放问题和最新技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Gursky其他文献
Matthew Gursky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Gursky', 18)}}的其他基金
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
2105460 - 财政年份:2021
- 资助金额:
$ 4.86万 - 项目类别:
Standard Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
1811034 - 财政年份:2018
- 资助金额:
$ 4.86万 - 项目类别:
Standard Grant
Variational Problems and Nonlinear Equations in Geometry
几何中的变分问题和非线性方程
- 批准号:
1509633 - 财政年份:2015
- 资助金额:
$ 4.86万 - 项目类别:
Standard Grant
Center for Mathematics at Notre Dame, June 2-6, 2014
巴黎圣母院数学中心,2014 年 6 月 2-6 日
- 批准号:
1419147 - 财政年份:2014
- 资助金额:
$ 4.86万 - 项目类别:
Continuing Grant
Variational Problems and Nonlinear Equations in Geometry
几何中的变分问题和非线性方程
- 批准号:
1206661 - 财政年份:2012
- 资助金额:
$ 4.86万 - 项目类别:
Standard Grant
Conference in Nonlinear Geometric Analysis
非线性几何分析会议
- 批准号:
0841068 - 财政年份:2008
- 资助金额:
$ 4.86万 - 项目类别:
Standard Grant
Variational problems and nonlinear equations from geometry
几何变分问题和非线性方程
- 批准号:
0800084 - 财政年份:2008
- 资助金额:
$ 4.86万 - 项目类别:
Standard Grant
Fully Nonlinear and Higher Order Equations in Geometry
几何中的完全非线性和高阶方程
- 批准号:
0500538 - 财政年份:2005
- 资助金额:
$ 4.86万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Fully Nonlinear Equations in Geometry
NSF/CBMS 数学科学区域会议:几何中的完全非线性方程
- 批准号:
0225735 - 财政年份:2003
- 资助金额:
$ 4.86万 - 项目类别:
Standard Grant
相似海外基金
REU Site: The DUB REU Program for Human-Centered Computing Research
REU 网站:DUB REU 以人为中心的计算研究计划
- 批准号:
2348926 - 财政年份:2024
- 资助金额:
$ 4.86万 - 项目类别:
Standard Grant
REU Site: Summer Research Program for Community College and Liberal Arts College Students in Physics and Astronomy
REU 网站:社区学院和文理学院学生物理和天文学夏季研究计划
- 批准号:
2349111 - 财政年份:2024
- 资助金额:
$ 4.86万 - 项目类别:
Continuing Grant
Collaborative Research: REU Site: Summer Undergraduate Research Program in RNA and Genome Biology (REU-RGB)
合作研究:REU 网站:RNA 和基因组生物学暑期本科生研究计划 (REU-RGB)
- 批准号:
2349255 - 财政年份:2024
- 资助金额:
$ 4.86万 - 项目类别:
Continuing Grant
Understanding Teacher Effectiveness and Retention Among Single Subject Math Program Completers in the First Five Years of Teaching
了解教师在教学前五年的效率和单科数学课程完成者的保留率
- 批准号:
2345187 - 财政年份:2024
- 资助金额:
$ 4.86万 - 项目类别:
Continuing Grant
Conference: Early Career Development (CAREER) Program Workshop for STEM Education Research at Minority-Serving Institutions
会议:少数族裔服务机构 STEM 教育研究早期职业发展 (CAREER) 计划研讨会
- 批准号:
2400690 - 财政年份:2024
- 资助金额:
$ 4.86万 - 项目类别:
Standard Grant
A cluster randomized controlled trial to evaluate pharmacy-based health promotion program to improve blood pressure control in Bangladesh, India and Pakistan
一项整群随机对照试验,旨在评估孟加拉国、印度和巴基斯坦基于药房的健康促进计划,以改善血压控制
- 批准号:
23K24566 - 财政年份:2024
- 资助金额:
$ 4.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Stanford-Florida Program in Support of LIGO on Coatings and Core Optics
合作研究:斯坦福-佛罗里达计划支持 LIGO 涂层和核心光学器件
- 批准号:
2309086 - 财政年份:2024
- 资助金额:
$ 4.86万 - 项目类别:
Continuing Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
- 批准号:
2409274 - 财政年份:2024
- 资助金额:
$ 4.86万 - 项目类别:
Standard Grant
Creating a Grow-Your-Own Program for Recruiting and Supporting Computer Science Teacher Candidates in Rural Georgia
创建一个自己成长的计划,用于招募和支持佐治亚州农村地区的计算机科学教师候选人
- 批准号:
2344678 - 财政年份:2024
- 资助金额:
$ 4.86万 - 项目类别:
Standard Grant