Variational problems and nonlinear equations from geometry
几何变分问题和非线性方程
基本信息
- 批准号:0800084
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-10-15 至 2012-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research activities supported by this award are in the field of geometric analysis, and the specific problems under investigation are located at the intersection of three fields: partial differential equations, differential geometry, and mathematical physics. For example, the functional determinant of an elliptic operator is a problem originating in spectral theory and mathematical physics, and the analysis of the particular problem we consider is a variational problem leading to a fourth order elliptic equation. The associated Lagrangian is unbounded, and the existence of solutions and their qualitative properties is highly nontrivial. Similar equations are used to model the properties of thin films. Another set of problems the principal investigator will explore involves certain fully nonlinear equations arising in conformal geometry and the theory of optimal transportation. Higher order regularity for these equations fails when the underlying manifold is negatively curved. While the structural reasons for this lack of regularity are in some sense understood (i.e., how the nonlinearity leads to the failure of certain estimates), there is no geometric description of the nature of singularities. The interaction of geometry and analysis dates back to at least the eighteenth century, and yet continues to be an important and highly active field of mathematical research. The classical subject of geometry grew out of our desire to understand certain properties of the physical world, and differential geometry was developed to understand the geometry of curved spaces--for example, the curvature of the surface of the earth, or the curvature of space by matter as predicted by general relativity. In the same way that Descartes realized that plane geometry can be studied using algebra, so differential geometry can be studied using techniques from analysis, especially differential equations. The research in this project involves disparate problems from geometry and mathematical physics, but its various aspects are united by the role played by mathematical analysis in their study.
该奖项支持的研究活动是在几何分析领域,所研究的具体问题位于三个领域的交叉点:偏微分方程、微分几何和数学物理。例如,椭圆算子的泛函行列式是一个起源于谱理论和数学物理的问题,而我们所考虑的特殊问题的分析是一个导致四阶椭圆方程的变分问题。相关的拉格朗日量是无界的,解的存在性及其定性性质是非平凡的。类似的方程被用来模拟薄膜的性质。另一组主要研究者将探讨的问题涉及保形几何和最优运输理论中出现的某些完全非线性方程。当底层流形为负弯曲时,这些方程的高阶正则性失效。虽然这种缺乏规律性的结构原因在某种意义上是可以理解的(即,非线性如何导致某些估计的失败),但没有对奇点性质的几何描述。几何和分析的相互作用至少可以追溯到18世纪,但仍然是数学研究的一个重要和高度活跃的领域。经典的几何学科源于我们想要理解物理世界的某些特性的愿望,而微分几何的发展是为了理解弯曲空间的几何——例如,地球表面的曲率,或者广义相对论所预测的物质对空间的曲率。就像笛卡尔意识到平面几何可以用代数来研究一样,微分几何也可以用分析的方法来研究,尤其是微分方程。该项目的研究涉及几何和数学物理等不同的问题,但数学分析在其研究中所起的作用将其各个方面联系在一起。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Gursky其他文献
Matthew Gursky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Gursky', 18)}}的其他基金
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
2105460 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
1811034 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Variational Problems and Nonlinear Equations in Geometry
几何中的变分问题和非线性方程
- 批准号:
1509633 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Center for Mathematics at Notre Dame, June 2-6, 2014
巴黎圣母院数学中心,2014 年 6 月 2-6 日
- 批准号:
1419147 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
IHP: Program in Conformal and Kahler Geometry
IHP:共形和卡勒几何项目
- 批准号:
1205937 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Variational Problems and Nonlinear Equations in Geometry
几何中的变分问题和非线性方程
- 批准号:
1206661 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Conference in Nonlinear Geometric Analysis
非线性几何分析会议
- 批准号:
0841068 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Fully Nonlinear and Higher Order Equations in Geometry
几何中的完全非线性和高阶方程
- 批准号:
0500538 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Fully Nonlinear Equations in Geometry
NSF/CBMS 数学科学区域会议:几何中的完全非线性方程
- 批准号:
0225735 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
2105460 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
1811034 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
16K05240 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Variational Problems and Nonlinear Equations in Geometry
几何中的变分问题和非线性方程
- 批准号:
1509633 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Variational study of nonlinear elliptic problems
非线性椭圆问题的变分研究
- 批准号:
25287025 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
25400180 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Variational Problems and Nonlinear Equations in Geometry
几何中的变分问题和非线性方程
- 批准号:
1206661 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Conference on recent development in L-infinity variational problems and the associated nonlinear partial differential equations
L-无穷变分问题及相关非线性偏微分方程最新发展会议
- 批准号:
1103165 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Study of structures of solutions to variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程解的结构研究
- 批准号:
22540203 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)