First Principles Description of Strongly Correlated Electrons Using Quantum Monte Carlo

使用量子蒙特卡罗描述强相关电子的第一原理

基本信息

  • 批准号:
    1206242
  • 负责人:
  • 金额:
    $ 22.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARYThis award supports computational and theoretical research and education to advance quantum Monte Carlo methods and study strongly correlated materials.The PI will calculate reduced density matrices from accurate quantum Monte Carlo calculations and use the information to develop a method to determine the nature of correlations in strongly correlated materials. The study of the metal-insulator transition in Vanadium dioxide will be a specific focus of study. The PI will use the methods to peform a survey of various correlated materials, including the cuprate superconductors. The PI aims to develop a model for the dependence of correlation on doping that will lead to a low-energy model for high temperature superconductor materials.As a result of this work, both publications and computer code to perform the calculations will be broadly distributed in the form of the open source program QWalk. This project will also train students in advanced computational modeling of strongly correlated materials at the frontiers of materials research.NON-TECHNICAL SUMMARYThis award supports computational and theoretical research to develop methods to gain insight into strongly correlated materials that exhibit correlations in the motion of electrons that arise from strong interactions between electrons. The research will focus on two classes of materials, vanadium dioxide and high temperature superconductors. It is thought that strong interactions between electrons lead to vanadium dioxide turning from a metal to an insulator. The high temperature superconductors exhibit superconductivity, a state of matter which can conduct electricity without loss, up to the highest temperatures at which superconductivity has been observed. It is believed that electron correlations are an important ingredient to achieving high temperature superconductivity. The PI wil develop a method based on the solution of the fundamental equation of quantum mechanics, the Schroedinger equation for a large number of electrons. The PI will use advanced methods to solve the equation with a minmum number of assumption which is computationally very intense. The PI will develop a method for analyzing the results which will provide information that can be used to develop a simplified model that is more computationally tractable. As a result of this work, both publications and computer code to perform the calculations will be broadly distributed in the form of the open source program QWalk. This project will also train students in advanced computational modeling of strongly correlated materials at the frontiers of materials research.
该奖项支持计算和理论研究和教育,以推进量子蒙特卡罗方法和研究强相关材料。PI将从精确的量子蒙特卡罗计算中计算约化密度矩阵,并使用这些信息开发一种方法来确定强相关材料中相关性的性质。二氧化钒中金属-绝缘体转变的研究将是一个具体的研究重点。PI将使用这些方法对各种相关材料进行调查,包括铜酸盐超导体。PI的目标是开发一个模型的相关性对掺杂的依赖性,这将导致一个低能量模型的高温超导材料。作为这项工作的结果,出版物和计算机代码来执行计算将广泛分布的形式的开源程序QWalk。该项目还将培养学生在材料研究前沿的强相关材料的高级计算建模。非技术总结该奖项支持计算和理论研究,以开发方法来深入了解强相关材料,这些材料表现出电子运动的相关性,这些相关性源于电子之间的强相互作用。 研究将集中在两类材料上,二氧化钒和高温超导体。 人们认为电子之间的强烈相互作用导致二氧化钒从金属变成绝缘体。高温超导体表现出超导性,这是一种可以在没有损失的情况下导电的物质状态,直到观察到超导性的最高温度。电子关联被认为是实现高温超导性的重要因素。PI将开发一种基于量子力学基本方程的解决方案的方法,即大量电子的薛定谔方程。PI将使用先进的方法来求解具有最小数量假设的方程,这在计算上非常密集。PI将开发一种分析结果的方法,该方法将提供可用于开发更易于计算的简化模型的信息。作为这项工作的结果,出版物和执行计算的计算机代码将以开源程序QWalk的形式广泛分发。该项目还将培养学生在材料研究前沿强相关材料的高级计算建模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucas Wagner其他文献

A trimetallic bismuth(I)-based allyl cation
一种基于铋(Ⅰ)的三金属烯丙基阳离子
  • DOI:
    10.1038/s41557-024-01691-x
  • 发表时间:
    2025-01-06
  • 期刊:
  • 影响因子:
    20.200
  • 作者:
    Davide Spinnato;Nils Nöthling;Markus Leutzsch;Maurice van Gastel;Lucas Wagner;Frank Neese;Josep Cornella
  • 通讯作者:
    Josep Cornella
Kohn-Sham calculations with the exact functional
Kohn-Sham 计算具有精确泛函
  • DOI:
    10.1103/physrevb.90.045109
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Lucas Wagner;T. E. Baker;E. Stoudenmire;K. Burke;S. White
  • 通讯作者:
    S. White
Hydrogen Molecule Dissociation Curve with Functionals Based on the Strictly Correlated Regime.
基于严格相关机制的氢分子解离曲线与泛函。
Reference electronic structure calculations in one dimension.
一维参考电子结构计算。
Hartree–Fock versus quantum Monte Carlo study of persistent current in a one-dimensional ring with single scatterer
  • DOI:
    10.1016/j.physe.2005.12.062
  • 发表时间:
    2006-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pavel Vagner;Martin Moško;Radoslav Németh;Lucas Wagner;Lubos Mitas
  • 通讯作者:
    Lubos Mitas

Lucas Wagner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
  • 批准号:
    51778175
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 22.89万
  • 项目类别:
    Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 22.89万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
  • 批准号:
    2344284
  • 财政年份:
    2024
  • 资助金额:
    $ 22.89万
  • 项目类别:
    Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
  • 批准号:
    2339001
  • 财政年份:
    2024
  • 资助金额:
    $ 22.89万
  • 项目类别:
    Continuing Grant
BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
  • 批准号:
    EP/Y036433/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.89万
  • 项目类别:
    Research Grant
CAREER: Foundational Principles for Harnessing Provenance Analytics for Advanced Enterprise Security
职业:利用来源分析实现高级企业安全的基本原则
  • 批准号:
    2339483
  • 财政年份:
    2024
  • 资助金额:
    $ 22.89万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
  • 批准号:
    2416160
  • 财政年份:
    2024
  • 资助金额:
    $ 22.89万
  • 项目类别:
    Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
  • 批准号:
    AH/Y007549/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.89万
  • 项目类别:
    Research Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    $ 22.89万
  • 项目类别:
    Continuing Grant
CAREER: Evolutionary Principles of Intrinsically Disordered Proteins
职业:本质无序蛋白质的进化原理
  • 批准号:
    2338129
  • 财政年份:
    2024
  • 资助金额:
    $ 22.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了