Combinatorics, Models, and Bounds in Hyperbolic Geometry
双曲几何中的组合学、模型和界限
基本信息
- 批准号:1207572
- 负责人:
- 金额:$ 29.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The notion of "bounded combinatorics" in the complex of curves on a surface controls geometry in a variety of settings. Understanding and bounding how simple closed curves on a surface can project to subsurfaces provides tools to construct models for hyperbolic 3-manifolds, classify Weil-Petersson geodesics, and elucidate the fine topological structure in boundaries of deformation spaces. Indeed, the existence and uniqueness of hyperbolic structures on 3-manifolds gives little information about their geometric features and their connection to topological properties of the manifold. Through his expansion of the use of the bi-Lipschitz Model Theorem (of the PI with Canary and Minsky), the PI will explore geometric models for arbitrary closed hyperbolic 3-manifolds and connect their structure to combinatorial features of the manifold. This ongoing project with collaborators Minsky, Namazi and Souto will produce explicit models for Heegaard splittings, and a new weak geometrization for 3-manifolds arising as infinite gluings with bounded combinatorics. Further, the PI will apply coarse methods in the study of the mapping class group via the curve complex and its associated "hierarchy paths" to understand the large scale structure of the Weil-Petersson metric on Teichmueller space, a fundamental object whose large scale geometry remains mysterious despite many investigations. Finally, the PI will exhibit further features of the deformation space of a hyperbolic 3-manifold, generalizing our study of the local topology of deformation spaces with Bromberg, Canary, and Minsky, and undertaking generalized studies of central compactness theorems for deformation spaces in the context of the curve complex.In mathematics, the study of dynamical systems seeks to describe chaotic phenomena in simple terms. Sometimes dynamical systems can exhibit a kind of rigidity, where a small tweak or perturbation does not affect the long term behavior of the system. In the context of understanding our own three-dimesnsional universe and what kind of structures three-dimensional spaces can have, structures give rise to these rigid dynamical systems. The recent work of Grisha Perelman solving the famous Poincare Conjecture has ensured this study applies to virtually all three-dimensional spaces. When a space is rigid, one can understand it completely via "coarse" information, via so-called "models." In a recent result of the PI with R. Canary and Y. Minsky, such models were used to classify all constantly negatively curved, or "hyperbolic" three-dimensional spaces of infinite volume that are tame in a certain sense. The classification result solved a long-standing conjecture of William Thurston, and opened the door to developing a more detailed and complete picture of geometries on manifolds previously considered understood. The groundwork is in place for a fundamental investigation of algebraic and topological properties of all spaces of 3-dimensions and how these properties interrelate.
曲面上曲线的复合体中的“有界组合数学”概念控制着各种环境中的几何图形。理解和界定曲面上的简单闭曲线如何投影到子曲面上,为构造双曲三维流形的模型、分类Weil-Petersson测地线和阐明变形空间边界上的精细拓扑结构提供了工具。事实上,三维流形上双曲结构的存在和唯一性很少提供关于它们的几何特征以及它们与流形的拓扑性质的联系的信息。通过他对双Lipschitz模型定理(与Canary和Minsky的PI)的使用的扩展,PI将探索任意闭双曲3-流形的几何模型,并将其结构与流形的组合特征联系起来。这个正在进行的项目与合作伙伴Minsky,Namazi和Souto将为Heegaard分裂产生显式模型,并为由于无限粘合有界组合数学而产生的3-流形产生一个新的弱几何化。此外,PI将应用粗略的方法通过曲线复形及其相关的“层次路径”来研究映射类群,以了解Teichmueller空间上的Weil-Petersson度量的大尺度结构,尽管进行了许多研究,但其大尺度几何仍然是一个神秘的基本对象。最后,PI将展示双曲三维流形的变形空间的进一步特征,推广了我们与Bromberg,Canary和Minsky对变形空间的局部拓扑的研究,并在曲线复形的背景下对变形空间的中心紧性定理进行了推广研究。在数学上,动力系统的研究试图用简单的术语描述混沌现象。有时动力系统会表现出一种刚性,在这种情况下,微小的调整或扰动不会影响系统的长期行为。在理解我们自己的三维宇宙以及三维空间可以具有什么样的结构的背景下,结构产生了这些刚性动力系统。格里沙·佩雷尔曼最近解决著名的庞加莱猜想的工作确保了这项研究几乎适用于所有三维空间。当一个空间是刚性的时,一个人可以通过“粗略”的信息,通过所谓的“模型”来完全理解它。在与R.Canary和Y.Minsky的PI最近的一个结果中,这样的模型被用来分类所有在一定意义上是驯服的无限体积的、连续的负曲线型或“双曲型”三维空间。分类结果解决了威廉·瑟斯顿长期以来的一个猜想,并为开发以前被认为已被理解的流形上更详细和完整的几何图景打开了大门。为基本研究所有三维空间的代数和拓扑性质以及这些性质之间的相互关系奠定了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Brock其他文献
Tameness on the boundary and Ahlfors’ measure conjecture
- DOI:
10.1007/s10240-003-0018-y - 发表时间:
2003-12-01 - 期刊:
- 影响因子:3.500
- 作者:
Jeffrey Brock;Kenneth Bromberg;Richard Evans;Juan Souto - 通讯作者:
Juan Souto
Jeffrey Brock的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Brock', 18)}}的其他基金
REU Site: Summer Undergraduate Math Research at Yale
REU 网站:耶鲁大学暑期本科生数学研究
- 批准号:
2050398 - 财政年份:2021
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Rigidity, Volume, and Combinatorics in Hyperbolic Geometry
双曲几何中的刚度、体积和组合学
- 批准号:
1849892 - 财政年份:2018
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Rigidity, Volume, and Combinatorics in Hyperbolic Geometry
双曲几何中的刚度、体积和组合学
- 批准号:
1608759 - 财政年份:2016
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Mapping Class Groups and Teichmuller Theory, May 7-14, 2014
映射类组和 Teichmuller 理论,2014 年 5 月 7-14 日
- 批准号:
1439369 - 财政年份:2014
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Teichmüller Theory, Kleinian Groups, and the Complex of Curves
泰希米勒理论、克莱尼群和曲线复形
- 批准号:
0906229 - 财政年份:2009
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
- 批准号:
0553694 - 财政年份:2006
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Effective Rigidity, Combinatorial Models, and Parameter Spaces for Low-Dimensional Hyperbolic Manifolds
低维双曲流形的有效刚性、组合模型和参数空间
- 批准号:
0505442 - 财政年份:2005
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
The Classification Problem for Hyperbolic 3-Manifolds
双曲 3 流形的分类问题
- 批准号:
0354288 - 财政年份:2003
- 资助金额:
$ 29.05万 - 项目类别:
Continuing Grant
The Classification Problem for Hyperbolic 3-Manifolds
双曲 3 流形的分类问题
- 批准号:
0204454 - 财政年份:2002
- 资助金额:
$ 29.05万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9706007 - 财政年份:1997
- 资助金额:
$ 29.05万 - 项目类别:
Fellowship Award
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
RI: Small: Anytime Algorithms and Bounds for Probabilistic Graphical Models
RI:小:概率图形模型的随时算法和界限
- 批准号:
2008516 - 财政年份:2020
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
CRII: RI: Anytime Inference with Confidence Bounds for Graphical Models
CRII:RI:图形模型的随时推理与置信界限
- 批准号:
1830161 - 财政年份:2018
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
AF: Small: Lower Bounds for Computational Models, and Relations to Other Topics in Computational Complexity
AF:小:计算模型的下界以及与计算复杂性中其他主题的关系
- 批准号:
1714779 - 财政年份:2017
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Collaborative Research: Honest Inference and Efficiency Bounds for Nonparametric Regression and Approximate Moment Condition Models
协作研究:非参数回归和近似矩条件模型的诚实推理和效率界限
- 批准号:
1628878 - 财政年份:2016
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
CRII: RI: Anytime Inference with Confidence Bounds for Graphical Models
CRII:RI:图形模型的随时推理与置信界限
- 批准号:
1565796 - 财政年份:2016
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Collaborative Research: Honest Inference and Efficiency Bounds for Nonparametric Regression and Approximate Moment Condition Models
协作研究:非参数回归和近似矩条件模型的诚实推理和效率界限
- 批准号:
1628939 - 财政年份:2016
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Advances in Econometrics for Treatment Effect Bounds, Time-Varying-Parameter Nonstationary/Stationary Autoregressive Models, and Identification-Robust Inference
治疗效果界限、时变参数非平稳/平稳自回归模型和识别稳健推理的计量经济学进展
- 批准号:
1355504 - 财政年份:2014
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Fundamental Bounds on Decentralized Adaptive Detection in Hidden Markov Models
隐马尔可夫模型中分散自适应检测的基本界限
- 批准号:
0830472 - 财政年份:2008
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant
Bounds for Competing Risks Duration Models using Administrative Unemployment Duration Data
使用行政失业持续时间数据的竞争风险持续时间模型的界限
- 批准号:
ES/F000855/1 - 财政年份:2007
- 资助金额:
$ 29.05万 - 项目类别:
Research Grant
ITR/AP: Realistic Uncertainty Bounds for Complex Dynamic Models
ITR/AP:复杂动态模型的现实不确定性界限
- 批准号:
0113985 - 财政年份:2001
- 资助金额:
$ 29.05万 - 项目类别:
Standard Grant














{{item.name}}会员




