Fundamental Bounds on Decentralized Adaptive Detection in Hidden Markov Models
隐马尔可夫模型中分散自适应检测的基本界限
基本信息
- 批准号:0830472
- 负责人:
- 金额:$ 18.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for ?TF08: Fundamental Bounds on Decentralized Adaptive Detection in Hidden Markov Models? (PI: Yajun Mei, NSF proposal #0830472)In modern information era, the advance of sensor, computing and communication technologies offers promising opportunities for the decision makers and organizations to make effective decisions quickly in many areas of real-world applications of sensor network systems. However, without timely updating or adaptation to reflect the changing environments, even the best decision-making methods are irrevocably vulnerable in applications such as threats detection in bioterrorism and hacking. The challenges become more difficult due to the complex spatio-temporal correlations among sensors and the constraints on communications, energy and computing. This research is concerned with the development of a general and systematic foundation and methodologies for decentralized adaptive detection when sensor observations are from hidden Markov models, with the focus on deriving the fundamental information limitation on the ability to reliably detect the changes. The investigator studies decentralized adaptive detection in hidden Markov models for two scenarios of sensor network systems. The first is the system where sensors do not have access to their past observations, in which the research topics include (i) optimal stationary quantizers; (ii) lower bounds on adaptive detection; (iii) robust detection via tandem quantizers; and (iv)adaptive detection with censored sensor observations. The second is the system where sensors have access their past observations, in which the research investigates: (i) universal information bounds; (ii) computing-friendly, effective schemes; (iii) schemes with controlled detection delay; and (iv) blockwise transmission.
抽象为?TF 08:隐马尔可夫模型中分散式自适应检测的基本界限?(PI:Yajun Mei,NSF proposal #0830472)在现代信息时代,传感器、计算和通信技术的进步为决策者和组织在传感器网络系统的许多实际应用领域提供了快速有效的决策机会。然而,如果没有及时更新或调整以反映不断变化的环境,即使是最好的决策方法在生物恐怖主义和黑客攻击中的威胁检测等应用中也是脆弱的。由于传感器之间复杂的时空相关性以及通信、能源和计算的限制,这些挑战变得更加困难。本研究关注的是一个通用的和系统的基础和方法的发展分散自适应检测时,传感器的观测是从隐马尔可夫模型,重点是推导出的基本信息的能力,可靠地检测到的变化的限制。研究了传感器网络系统中两种情况下隐马尔可夫模型的分散自适应检测。第一种是传感器无法访问其过去观测的系统,其中的研究主题包括:(i)最佳平稳量化器;(ii)自适应检测的下限;(iii)通过串联量化器的鲁棒检测;和(iv)具有删失传感器观测的自适应检测。第二种是传感器访问其过去的观测的系统,在该系统中,研究调查:(i)通用信息边界;(ii)计算友好,有效的计划;(iii)具有控制检测延迟的计划;和(iv)块传输。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yajun Mei其他文献
Private Sequential Hypothesis Testing for Statisticians: Privacy, Error Rates, and Sample Size
统计学家的私人序贯假设检验:隐私、错误率和样本量
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Wanrong Zhang;Yajun Mei;Rachel Cummings - 通讯作者:
Rachel Cummings
A Personalized Threshold Method via Boosting for Sepsis Screening
通过增强脓毒症筛查的个性化阈值方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chen Feng;Paul M. Griffin;S. Kethireddy;Yajun Mei - 通讯作者:
Yajun Mei
Jugular Venous Catheterization is Not Associated with Increased Complications in Patients with Aneurysmal Subarachnoid Hemorrhage
- DOI:
10.1007/s12028-024-02173-1 - 发表时间:
2024-11-26 - 期刊:
- 影响因子:3.600
- 作者:
Feras Akbik;Yuyang Shi;Steven Philips;Cederic Pimentel-Farias;Jonathan A. Grossberg;Brian M. Howard;Frank Tong;C. Michael Cawley;Owen B. Samuels;Yajun Mei;Ofer Sadan - 通讯作者:
Ofer Sadan
Intrathecal Nicardipine for Cerebral Vasospasm Post Subarachnoid Hemorrhage–a Retrospective Propensity-Based Analysis
鞘内注射尼卡地平治疗蛛网膜下腔出血后脑血管痉挛——基于倾向的回顾性分析
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
O. Sadan;Hannah Waddel;R. Moore;Chen Feng;Yajun Mei;David Pearce;J. Kraft;Cederic Pimentel;Subin Mathew;F. Akbik;P. Ameli;A. Taylor;L. Danyluk;S. Kathleen;Martin;Krista Garner;Jennifer Kolenda;Amit Pujari;William;Asbury;Blessing N. R. Jaja;R. Macdonald;C. Cawley;D. Barrow;O. Samuels - 通讯作者:
O. Samuels
Intrathecal Nicardipine for Cerebral Vasospasm Post Subarachnoid Hemorrhage: a Retrospective Analysis and Propensity-Based Comparison
鞘内注射尼卡地平治疗蛛网膜下腔出血后脑血管痉挛:回顾性分析和基于倾向的比较
- DOI:
10.1101/2020.08.31.20185181 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
O. Sadan;Hannah Waddel;R. Moore;Chen Feng;Yajun Mei;David Pearce;J. Kraft;Cederic Pimentel;Subin Mathew;F. Akbik;P. Ameli;A. Taylor;L. Danyluk;K. Martin;Krista Garner;Jennifer Kolenda;Amit Pujari;W. Asbury;Blessing N. R. Jaja;R. Macdonald;C. Cawley;D. Barrow;O. Samuels - 通讯作者:
O. Samuels
Yajun Mei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yajun Mei', 18)}}的其他基金
Active Sequential Change-Point Analysis of Multi-Stream Data
多流数据的主动顺序变点分析
- 批准号:
2015405 - 财政年份:2020
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Adaptive and Rapid Spatial-Temporal Threat Detection over Networks
ATD:协作研究:网络上的自适应快速时空威胁检测
- 批准号:
1830344 - 财政年份:2018
- 资助金额:
$ 18.38万 - 项目类别:
Continuing Grant
Scaling Summaries in Multiscale Domains with Applications
通过应用程序扩展多尺度域中的摘要
- 批准号:
1613258 - 财政年份:2016
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
Collaborative Research: Online Monitoring of High-Dimensional Streaming Data Using Adaptive Order Shrinkage
合作研究:利用自适应阶次收缩在线监测高维流数据
- 批准号:
1362876 - 财政年份:2014
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
Achieving Spatial Adaptation via Inconstant Penalization: Theory and Computational Strategies
通过不恒定惩罚实现空间适应:理论和计算策略
- 批准号:
1106940 - 财政年份:2011
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
CAREER: Streaming Data Analysis in Sensor Networks
职业:传感器网络中的流数据分析
- 批准号:
0954704 - 财政年份:2010
- 资助金额:
$ 18.38万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Lower Bounds for Shallow Circuits
职业生涯:浅层电路的下限
- 批准号:
2338730 - 财政年份:2024
- 资助金额:
$ 18.38万 - 项目类别:
Continuing Grant
Complexity Lower Bounds from Expansion
扩展带来的复杂性下限
- 批准号:
23K16837 - 财政年份:2023
- 资助金额:
$ 18.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Non-parametric estimation under covariate shift: From fundamental bounds to efficient algorithms
协变量平移下的非参数估计:从基本界限到高效算法
- 批准号:
2311072 - 财政年份:2023
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
Branching Program Lower Bounds
分支程序下界
- 批准号:
RGPIN-2019-06288 - 财政年份:2022
- 资助金额:
$ 18.38万 - 项目类别:
Discovery Grants Program - Individual
Tighter error bounds for representation learning and lifelong learning
表征学习和终身学习的更严格的误差范围
- 批准号:
RGPIN-2018-03942 - 财政年份:2022
- 资助金额:
$ 18.38万 - 项目类别:
Discovery Grants Program - Individual
AF: Small: New Techniques for Optimal Bounds on MCMC Algorithms
AF:小:MCMC 算法最优边界的新技术
- 批准号:
2147094 - 财政年份:2022
- 资助金额:
$ 18.38万 - 项目类别:
Standard Grant
Lower bounds, meta-algorithms, and pseudorandomness
下界、元算法和伪随机性
- 批准号:
RGPIN-2019-05543 - 财政年份:2022
- 资助金额:
$ 18.38万 - 项目类别:
Discovery Grants Program - Individual
Extremal Combinatorics Exact Bounds
极值组合精确界
- 批准号:
574168-2022 - 财政年份:2022
- 资助金额:
$ 18.38万 - 项目类别:
University Undergraduate Student Research Awards
Lower bounds on ranks of nontrivial toric vector bundles
非平凡环面向量丛的秩下界
- 批准号:
558713-2021 - 财政年份:2022
- 资助金额:
$ 18.38万 - 项目类别:
Postgraduate Scholarships - Doctoral
Bringing upper and lower bounds closer in computational geometry
使计算几何中的上限和下限更加接近
- 批准号:
567959-2022 - 财政年份:2022
- 资助金额:
$ 18.38万 - 项目类别:
Postgraduate Scholarships - Doctoral