Extending the use of machine learning algorithms to Sufficient Dimension Reduction
将机器学习算法的使用扩展到充分降维
基本信息
- 批准号:1207651
- 负责人:
- 金额:$ 11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator develops new methodologies for sufficient dimension reduction both for linear and nonlinear dimension reduction problems. A method developed recently by the investigator and his collaborators utilizes classic two-class Support Vector Machine algorithms to develop a new class of algorithms for linear and nonlinear sufficient dimension reduction under a unified framework. In this work the investigator extends this methodology in several directions. First, different extensions of the classic Support Vector Machine algorithms are used to improve the performance and the asymptotic properties of the original method. Second, the method is extended to algorithms that allow for multi-class classification. Third, the investigator develops new method-specific and method-free variable selection methodologies for sufficient dimension techniques based on ideas in the machine learning literature. Finally, new algorithms for the order determination of the dimension reduction space based on the new methodology are developed.Recent advancements in computer science have increased computer power and, subsequently, the capability of storing large datasets efficiently. Thus, to analyze large datasets effectively in many sciences, like Biology, Meteorology, Genetics and Economics, new techniques are needed to reduce the dimensionality of the datasets. This work creates new algorithms to reduce the dimensionality of large datasets effectively, for both linear or nonlinear relationships between variables. These techniques transform a high-dimensional regression or classification problem to a lower-dimensional one, which helps to identify hidden relationships among variables. The methodology being developed will be an efficient tool for scientists working with large datasets, and it will open new research frontiers to statisticians to develop new ideas in the area of dimension reduction.
研究者开发了新的方法,充分降维线性和非线性降维问题。 研究者及其合作者最近开发的一种方法利用经典的两类支持向量机算法,在统一的框架下开发了一类新的线性和非线性充分降维算法。 在这项工作中,研究人员在几个方向上扩展了这种方法。首先,对经典的支持向量机算法进行了不同的扩展,以提高原方法的性能和渐近性质。其次,该方法扩展到允许多类分类的算法。 第三,研究者根据机器学习文献中的思想,为足够的维度技术开发了新的方法特定和方法无关的变量选择方法。 最后,基于新的方法论,提出了新的降维空间的定阶算法。计算机科学的最新进展提高了计算机的计算能力,从而提高了有效存储大型数据集的能力。 因此,为了有效地分析许多科学中的大型数据集,如生物学,气象学,遗传学和经济学,需要新的技术来减少数据集的维数。 这项工作创建了新的算法,以有效地减少大型数据集的维数,无论是线性或非线性变量之间的关系。 这些技术将高维回归或分类问题转换为低维问题,这有助于识别变量之间的隐藏关系。 正在开发的方法将成为科学家处理大型数据集的有效工具,并将为统计人员开辟新的研究前沿,以在降维领域提出新的想法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Artemiou其他文献
Nonlinear dimension reduction for conditional quantiles
- DOI:
10.1007/s11634-021-00439-6 - 发表时间:
2021-03-23 - 期刊:
- 影响因子:1.300
- 作者:
Eliana Christou;Annabel Settle;Andreas Artemiou - 通讯作者:
Andreas Artemiou
Andreas Artemiou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
降低慢病毒载体转录“通读率”的研究
- 批准号:81271690
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluating the Use of Machine Translation through Eye Tracking
通过眼动追踪评估机器翻译的使用
- 批准号:
24K04055 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
- 批准号:
10089281 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Investment Accelerator
Use and Concept in Neural Machine Translation and Cross-Linguistic Divergence
神经机器翻译和跨语言分歧中的使用和概念
- 批准号:
23K21872 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 11万 - 项目类别:
Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
- 批准号:
486956 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别:
Operating Grants
Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
- 批准号:
10697560 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别:
Social and behavioral determinants of MOUD utilization and opioid overdose
MOUD 使用和阿片类药物过量的社会和行为决定因素
- 批准号:
10664099 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别:
Anticoagulant use, safety, and effectiveness for venous thromboembolism prevention in inflammatory bowel disease patients
炎症性肠病患者预防静脉血栓栓塞的抗凝剂使用、安全性和有效性
- 批准号:
10887842 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别:
Deep-UV Microscopy for Real-Time Adequacy Analysis of Bone Marrow Aspirates
用于骨髓抽吸物实时充分性分析的深紫外显微镜
- 批准号:
10761397 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别: