Nonparametric Prediction and Structure Discovery for Spatial Dynamics
空间动力学的非参数预测和结构发现
基本信息
- 批准号:1207759
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops new methods for non-parametric prediction, filtering, and structure discovery, primarily for spatio-temporal data but also in a range of other settings with high-dimensional observations, such as networks. There are two novel aspects to the investigation's approach. First, rather than trying to predict spatio-temporal data globally, or according to a fixed pattern, it exploits the dynamics of the system to develop a novel form of local prediction which still captures long-scale structure. Second, while conventional non-parametric smoothing is based on the usual geometry of the space of predictor variables, this is supplemented smoothing together input points which have similar predictive consequences, in effect discovering a new geometry. This approach, which draws on earlier work on information theory in nonlinear dynamics, allows for accurate forecasting of the evolution of large spatio-temporal systems in a computationally efficient manner. It also allows for the automatic discovery of complex higher-level structures in such data. Scientific data increasingly comes as complex measurements spread over space and time. Scientists need ways to forecast how such systems will evolve, and to automatically separate important (but perhaps subtle) patterns from inconsequential "background" of the system, since the structures are often crucial to understanding the dynamics. This project tackles both of these challenging statistical problems together. It combines idea from information theory and nonlinear physics with modern tools of flexible statistical modeling to discover the intrinsic dynamics of the system from the data itself, and uses these structures for both prediction and filtering. Areas of potential application include neuroscience, fluid dynamics, and ecology, where it would help forecast the behavior of complex systems, and help to find the organized structures which are keys to controlling that behavior.
该项目开发了用于非参数预测,过滤和结构发现的新方法,主要用于时空数据,但也用于具有高维观测的其他设置,如网络。 调查方法有两个新颖的方面。 首先,它不是试图预测全球的时空数据,或根据一个固定的模式,它利用系统的动态发展一种新形式的本地预测,仍然捕捉长期的结构。 其次,虽然传统的非参数平滑是基于预测变量空间的通常几何形状,但这是补充平滑具有类似预测结果的输入点,实际上发现了一个新的几何形状。 这种方法,它借鉴了非线性动力学信息理论的早期工作,允许精确预测的大型时空系统的演化在计算上有效的方式。 它还允许自动发现此类数据中复杂的高级结构。科学数据越来越多地来自跨越空间和时间的复杂测量。 科学家们需要一些方法来预测这样的系统将如何演变,并自动将重要的(但可能是微妙的)模式从系统的无关紧要的“背景”中分离出来,因为结构通常对理解动态至关重要。 这个项目同时解决了这两个具有挑战性的统计问题。 它将信息论和非线性物理学的思想与灵活的统计建模的现代工具相结合,从数据本身发现系统的内在动力学,并使用这些结构进行预测和过滤。 潜在的应用领域包括神经科学,流体动力学和生态学,它将有助于预测复杂系统的行为,并有助于找到控制该行为的关键组织结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cosma Shalizi其他文献
Cosma Shalizi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cosma Shalizi', 18)}}的其他基金
Simulation-based Inference through Random Features
通过随机特征进行基于模拟的推理
- 批准号:
2310834 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似海外基金
Study on Prediction of Pore Structure Change by Drying Conditions for Hardend Blended Cement
硬化掺合水泥干燥条件预测孔结构变化的研究
- 批准号:
23K13443 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An all-in-one web server for RNA structure prediction using evolutionary information
一种使用进化信息预测 RNA 结构的一体化网络服务器
- 批准号:
10574944 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
The Dundee Resource for Sequence Analysis and Structure Prediction (DRSASP) - 2023 and Beyond
邓迪序列分析和结构预测资源 (DRSASP) - 2023 年及以后
- 批准号:
BB/X018628/1 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Research Grant
SBIR Phase I: A physics-based machine learning platform for crystal structure prediction of small drug molecules
SBIR 第一阶段:基于物理的机器学习平台,用于小药物分子晶体结构预测
- 批准号:
2227936 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Asymptotic approximation of the large-scale structure of turbulence in axisymmetric jets: a first principle jet noise prediction method
轴对称射流中湍流大尺度结构的渐近逼近:第一原理射流噪声预测方法
- 批准号:
EP/W01498X/1 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Integrative deep learning algorithms for understanding protein sequence-structure-function relationships: representation, prediction, and discovery
用于理解蛋白质序列-结构-功能关系的集成深度学习算法:表示、预测和发现
- 批准号:
10712082 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Development of prediction system for time-dependent performance of steel-concrete hybrid structure after intervention
干预后钢-混凝土混合结构随时间变化的性能预测系统的开发
- 批准号:
23H01490 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Integrating electronic structure methods within Ambuild for porous polymer property prediction.
将电子结构方法集成到 Ambuild 中以进行多孔聚合物性能预测。
- 批准号:
2904662 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship
Development of linker design method for PROTAC based on ternary complex structure prediction
基于三元复杂结构预测的PROTAC连接子设计方法开发
- 批准号:
23K16987 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Design and development of efficient algorithms for RNA interaction structure prediction
RNA相互作用结构预测的高效算法的设计和开发
- 批准号:
RGPIN-2020-04243 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




