Simulation-based Inference through Random Features
通过随机特征进行基于模拟的推理
基本信息
- 批准号:2310834
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Scientists use simulations to model all kinds of complex systems, from astronomy and ecology, through climatology and finance, to epidemiology and chemical engineering. Once scientists pin down all the parameters in a simulation model, it's easy to run it forward and see what it predicts. Going the other way, from outcomes back to parameters, is usually much harder, but it's the crucial step in fitting models to actual data from the real world, and so knowing which simulations are trustworthy. Good simulation modelers put lots of time and effort into working out what the crucial aspects or "features" of the data are for their models, and then adjusting their models so the simulation output matches those features of real data. This project aims to make such simulation-based inference nearly automatic. Bringing together ideas machine learning and nonlinear dynamics shows that simulation models can be fit by matching about two randomly-chosen features for every parameter. The project will make this into a practical and generic tool for simulation, by adapting the basic method to work with different types of data (time series, spatial, networks, etc.), writing software to automatically pick the features and adjust the model parameters, and developing statistical methods to quantify the uncertainty of the results. This can benefit every area of science and technology that uses simulations. The project will contribute to the training of STEM researchers through the involvement of a post-doctoral fellow and a graduate student.Scientists increasingly express their ideas in generative models which produce fine-grained simulations of the processes they study. Traditional statistical approaches to parameter inference are ill-adapted to such models: just evaluating the likelihood function is usually computationally intractable, never mind optimizing it. Many techniques of simulation-based inference have developed in response, but these typically require picking multiple summary statistics or features, and tuning the generative model's parameters so that summaries calculated on simulations match those calculated on empirical data. Practitioners often spend considerable effort on carefully designing these summaries, aiming to minimize the loss of information from the full data. This project will free simulation-based inference from the need to design informative summaries, by instead using random functions of the data. This draws on two literatures not previously connected to simulation-based inference. One is work in machine learning over the last decade, which has highlighted the power of "random features", showing that predictions based on random functions of high-dimensional data are nearly as good as predictions based on optimal functions of the data. The other is now-classic work in nonlinear dynamics from the 1980s and 1990s, which suggests that 2d+1 random features should suffice to capture d underlying parameters. Bringing these ideas together with the well-established results on simulation-based inference will provide a simple, practical methodology of parameter estimation, uncertainty quantification and hypothesis testing, applicable to a wide range of modern simulation models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学家们使用模拟来模拟各种复杂的系统,从天文学和生态学,到气候学和金融学,再到流行病学和化学工程。一旦科学家确定了模拟模型中的所有参数,就很容易向前运行并查看它的预测。另一种方法,从结果回到参数,通常要困难得多,但这是将模型拟合到来自真实的世界的实际数据的关键一步,因此知道哪些模拟是可信的。好的模拟建模者会投入大量的时间和精力来确定数据的关键方面或“特征”对于他们的模型来说是什么,然后调整他们的模型,使模拟输出与真实的数据的特征相匹配。该项目旨在使这种基于模拟的推理几乎自动化。将机器学习和非线性动力学的思想结合在一起,表明可以通过为每个参数匹配大约两个随机选择的特征来拟合仿真模型。该项目将使其成为一个实用和通用的模拟工具,通过调整基本方法来处理不同类型的数据(时间序列、空间、网络等),编写软件来自动选择特征和调整模型参数,并开发统计方法来量化结果的不确定性。这可以使使用模拟的每个科学和技术领域受益。该项目将通过一名博士后研究员和一名研究生的参与,为STEM研究人员的培训做出贡献。科学家们越来越多地用生成模型来表达他们的想法,这些模型可以对他们研究的过程进行细粒度的模拟。传统的参数推断的统计方法并不适用于这样的模型:仅仅评估似然函数通常在计算上是困难的,更不用说优化它了。许多基于模拟的推断技术已经发展起来,但这些技术通常需要选择多个汇总统计量或特征,并调整生成模型的参数,以便根据模拟计算的汇总与根据经验数据计算的汇总相匹配。从业者经常花费相当大的精力仔细设计这些摘要,旨在最大限度地减少完整数据中的信息损失。该项目将通过使用数据的随机函数,将基于模拟的推理从设计信息摘要的需要中解放出来。这借鉴了以前没有连接到基于模拟的推理的两个文献。一个是过去十年机器学习方面的工作,它强调了“随机特征”的力量,表明基于高维数据的随机函数的预测几乎与基于数据的最优函数的预测一样好。另一个是20世纪80年代和90年代非线性动力学的经典研究,它表明2d+1随机特征应该足以捕获d个基本参数。将这些想法与基于模拟的推理的成熟结果结合在一起,将提供一种简单实用的参数估计、不确定性量化和假设检验方法,适用于广泛的现代模拟模型。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cosma Shalizi其他文献
Cosma Shalizi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cosma Shalizi', 18)}}的其他基金
Nonparametric Prediction and Structure Discovery for Spatial Dynamics
空间动力学的非参数预测和结构发现
- 批准号:
1207759 - 财政年份:2012
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Simulation-based inference for Smions Observatory
斯米恩斯天文台基于模拟的推理
- 批准号:
2885648 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
- 批准号:
10438246 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
- 批准号:
10599340 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Simulation-Based Inference for Differential Privacy
基于模拟的差分隐私推理
- 批准号:
2150615 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
- 批准号:
RGPIN-2019-06114 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Objective and noninvasive diagnosis of middle-ear and conductive pathologies using simulation-based inference and transfer learning applied to clinical data
使用基于模拟的推理和应用于临床数据的迁移学习来客观、无创地诊断中耳和传导性病变
- 批准号:
10759307 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Simulation of nucleation based on Bayesian inference and surrogate modeling
基于贝叶斯推理和代理建模的成核模拟
- 批准号:
22K18875 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Joint analysis of galaxy clustering and weak lensing via simulation-based inference
通过基于模拟的推理对星系团聚和弱透镜效应进行联合分析
- 批准号:
ST/V004239/1 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Fellowship
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
- 批准号:
RGPIN-2019-06114 - 财政年份:2021
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual
Simulation-based multiple inference problems: theory and application
基于仿真的多重推理问题:理论与应用
- 批准号:
RGPIN-2019-06114 - 财政年份:2020
- 资助金额:
$ 22.5万 - 项目类别:
Discovery Grants Program - Individual