Bayesian Decision Theoretic Methods for Some High-Dimensional Multiple Inference Problems

一些高维多重推理问题的贝叶斯决策理论方法

基本信息

  • 批准号:
    1208735
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-15 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

The project covers some outstanding and important inference problems that statisticians face when analyzing high-dimensional data from brain imaging, next generation sequencing, atmospheric science, astronomical studies, and many other scientific investigations. Miss-detecting a strong signal in these experiments, particularly when the signals are sparse, is often a more severe error than miss-detecting a weak signal, and this error gets more severe as the signal gets stronger. This is an important issue which has not been fully utilized in the existing procedures designed for simultaneous testing of multiple hypotheses. Also, selective inference using multiple confidence intervals is an emerging area of statistical research whose importance is being realized very recently. However, while analyzing high-dimensional data with sparse signals, the existing intervals designed to provide estimates of the selected significant signals can become non-informative in the sense of miss-covering the true signal or covering zero too often if the sparse nature of the data is not properly taken into account. This research project seeks to develop new and innovative methods taking a Bayesian decision theoretic viewpoint which is particularly well suited to tackle these issues. It focuses on the following two broad areas of research: (i) Developing new multiple testing methods controlling false discoveries incorporating the severity of type II errors, and (ii) developing new multiple confidence intervals for selected parameters under zero-inflated mixture prior. This project will be expected to have a broad impact on the theory and practice of statistics. It can produce novel methodologies to detect true signals in modern and high-dimensional scientific investigations, and pave the way for better use of statistics towards meeting modern societal and scientific needs. For instance, understanding vegetation changes under seasonal variability is crucial for more effective land use management when coping with climate changes and food security. This project can potentially offer new methodologies towards addressing that sustainability issue. Also, there is an increasing demand for sophisticated statistical tools to have better understanding of astronomical behaviors based on the influx of data created by the advent of new technologies. Again, this project can potentially meet that demand. The results will be disseminated through presentations and discussions at national and international conferences, and visits to other institutions. The software to be developed under this project will be made available, free of charge, to the scientific community.
该项目涵盖了统计学家在分析来自脑成像、下一代测序、大气科学、天文研究和许多其他科学研究的高维数据时面临的一些突出和重要的推理问题。在这些实验中,探测不到强信号,特别是当信号稀疏时,往往比探测不到弱信号更严重,而且随着信号变得更强,这种错误会变得更严重。这是一个重要的问题,但在为同时检验多个假设而设计的现有程序中尚未得到充分利用。此外,使用多个置信区间的选择性推断是统计研究的一个新兴领域,其重要性最近才认识到。然而,在分析具有稀疏信号的高维数据时,如果没有适当考虑到数据的稀疏性,则设计用于提供所选重要信号估计的现有区间可能会在遗漏真实信号或过于频繁地覆盖零的意义上变得无信息。该研究项目旨在开发新的创新方法,采用贝叶斯决策理论的观点,特别适合解决这些问题。它侧重于以下两个广泛的研究领域:(i)开发新的多重测试方法来控制包含II型错误严重程度的错误发现,以及(II)在零膨胀混合先验下为选定参数开发新的多重置信区间。预计该项目将对统计学的理论和实践产生广泛的影响。它可以产生新的方法来发现现代和高维科学调查中的真实信号,并为更好地利用统计来满足现代社会和科学需求铺平道路。例如,了解季节性变化下的植被变化对于在应对气候变化和粮食安全时更有效地进行土地利用管理至关重要。这个项目可能为解决可持续性问题提供新的方法。此外,人们越来越需要复杂的统计工具,以便更好地理解新技术带来的大量数据所带来的天文行为。同样,这个项目有可能满足这种需求。研究结果将通过在国家和国际会议上的演讲和讨论以及访问其他机构来传播。在这个项目下开发的软件将免费提供给科学界。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new approach to multiple testing of grouped hypotheses
分组假设多重检验的新方法
Capturing the severity of type II errors in high-dimensional multiple testing
在高维多重测试中捕获 II 类错误的严重性
  • DOI:
    10.1016/j.jmva.2015.08.005
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    He, Li;Sarkar, Sanat K.;Zhao, Zhigen
  • 通讯作者:
    Zhao, Zhigen
ON CONSISTENCY AND SPARSITY FOR SLICED INVERSE REGRESSION IN HIGH DIMENSIONS
  • DOI:
    10.1214/17-aos1561
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Lin, Qian;Zhao, Zhigen;Liu, Jun S.
  • 通讯作者:
    Liu, Jun S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhigen Zhao其他文献

On the testing of multiple hypothesis in sliced inverse regression
切片逆回归中多重假设的检验
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhigen Zhao;Xin Xing
  • 通讯作者:
    Xin Xing
Bayesian mixed-effect higher-order hidden Markov models with applications to predictive healthcare using electronic health records
贝叶斯混合效应高阶隐马尔可夫模型及其在使用电子健康记录的预测医疗保健中的应用
  • DOI:
    10.1080/24725854.2024.2302368
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Ying Liao;Yisha Xiang;Zhigen Zhao;Di Ai
  • 通讯作者:
    Di Ai
Where to find needles in a haystack?
大海捞针哪里找?
  • DOI:
    10.1007/s11749-021-00775-x
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Zhigen Zhao
  • 通讯作者:
    Zhigen Zhao
Network analysis in detection of early-stage mild cognitive impairment
  • DOI:
    http://dx.doi.org/10.1016/j.physa.2017.02.044
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
  • 作者:
    Huangjing Ni;Jiaolong Qin;Luping Zhou;Zhigen Zhao;Jun Wang;Fengzhen Hou
  • 通讯作者:
    Fengzhen Hou
江西涌山桥矿区瓦斯地质特征研究

Zhigen Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhigen Zhao', 18)}}的其他基金

Collaborative Research: Multiple Hypothesis Testing on the Regression Analysis
合作研究:回归分析的多重假设检验
  • 批准号:
    2311216
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Statistical Theory and Methods Beyond the Dimensionality Barrier
BIGDATA:协作研究:F:超越维度障碍的统计理论和方法
  • 批准号:
    1633283
  • 财政年份:
    2016
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Decision Theoretic Bayesian Computation
决策理论贝叶斯计算
  • 批准号:
    1812197
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
A Bayesian decision-theoretic framework to evaluate and optimize decision making for mastitis control in the UK Mastitis Control Scheme.
贝叶斯决策理论框架,用于评估和优化英国乳腺炎控制计划中乳腺炎控制的决策。
  • 批准号:
    BB/I015493/1
  • 财政年份:
    2012
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Training Grant
Multicenter Bayesian Decision-Theoretic Clinical Trials
多中心贝叶斯决策理论临床试验
  • 批准号:
    7758852
  • 财政年份:
    2007
  • 资助金额:
    $ 17.5万
  • 项目类别:
Multicenter Bayesian Decision-Theoretic Clinical Trials
多中心贝叶斯决策理论临床试验
  • 批准号:
    7221505
  • 财政年份:
    2007
  • 资助金额:
    $ 17.5万
  • 项目类别:
Bayesian and Decision Theoretic Tools
贝叶斯和决策理论工具
  • 批准号:
    8133086
  • 财政年份:
    2003
  • 资助金额:
    $ 17.5万
  • 项目类别:
Bayesian and Decision Theoretic Tools
贝叶斯和决策理论工具
  • 批准号:
    8380915
  • 财政年份:
    2003
  • 资助金额:
    $ 17.5万
  • 项目类别:
Bayesian and Decision Theoretic Tools
贝叶斯和决策理论工具
  • 批准号:
    8529629
  • 财政年份:
    2003
  • 资助金额:
    $ 17.5万
  • 项目类别:
Bayesian and Decision Theoretic Tools
贝叶斯和决策理论工具
  • 批准号:
    8322096
  • 财政年份:
    2003
  • 资助金额:
    $ 17.5万
  • 项目类别:
Bayesian and Decision Theoretic Tools
贝叶斯和决策理论工具
  • 批准号:
    7756523
  • 财政年份:
    2003
  • 资助金额:
    $ 17.5万
  • 项目类别:
Iterative Processes of Decision Making: A Bayesian Game Theoretic Framework
决策的迭代过程:贝叶斯博弈论框架
  • 批准号:
    8721469
  • 财政年份:
    1988
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了