Statistical Inferences, Computing, and Applications of Semiparametric Accelerated Failure Time Models
半参数加速失效时间模型的统计推断、计算和应用
基本信息
- 批准号:1209022
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Accelerated failure time (AFT) models are much less utilized in practice than relative risk models because of difficulty in inference and limited availability in standard software. The investigators develop 1) generalized estimating equations (GEE) for multivariate AFT models with application to adolescent depression, 2) induced smoothing rank-based approach and least squares approach for AFT models with covariates missing by design, 3) regularized estimation for AFT models with high dimensional covariates, and 4) an open source, high-quality, and user-friendly software implementation for inferences with AFT models. The GEE approach is incorporated into an iterative procedure to estimate the regression coefficients in multivariate AFT models, initializing from a consistent and asymptotically normal estimator obtained with induced smoothing. Inferences with covariates missing by design proceed with appropriately constructed selection weights for estimating functions. Regularized estimation is done by minimizing an objective function, where three novel choices of risk functions are combined with a variety of penalty functions, including nonconvex ones such as minimax concave penalty. Software implementation will be made available as R packages.Methodological development on AFT models is far behind that on relative risk models due to computational and inferential challenges. The investigators shorten the gap with a comprehensive collection of methodologies and software implementation for AFT models in practical settings that are frequently encountered in biomedical, epidemiological, and social science studies. The methodologies and software implementation are expected to have an influential impact on the practice of failure time modeling. The open source implementation provides a realistic alternative to the relative risk model for censored data regression. Applications of the methods to ongoing collaborative projects that motivated the proposed research have cross-boundary effects. A bivariate AFT model for the duration of depression and the duration of major stressors offers a novel perspective to gain insight into onset and maintenance of depressive episodes. The project is naturally integrated with education through undergraduate/graduate student thesis advising, graduate level courses, and short courses at conferences in both the statistics community and the psychology community. The publicly available software makes the cutting-edge statistical methodology accessible to those who need them in scientific discoveries.
加速失效时间(AFT)模型在实践中的应用要比相对风险模型少得多,因为推理困难和标准软件的可用性有限。 研究人员开发了1)适用于青少年抑郁症的多变量AFT模型的广义估计方程(GEE),2)用于设计缺失协变量的AFT模型的诱导平滑秩基方法和最小二乘法,3)用于高维协变量的AFT模型的正则化估计,以及4)用于AFT模型推断的开源,高质量和用户友好的软件实现。 GEE方法被纳入到一个迭代过程中,以估计多元AFT模型中的回归系数,初始化从一个一致的和渐近正态的估计与诱导平滑。 设计缺失协变量的推断使用适当构造的估计函数的选择权重进行。 正则化估计是通过最小化目标函数来完成的,其中三个新的风险函数的选择与各种惩罚函数相结合,包括非凸的,如极大极小凹惩罚。 由于计算和推理方面的挑战,AFT模型的方法学发展远远落后于相对风险模型。研究人员缩短了差距与全面收集的方法和软件实现的AFT模型在实际环境中,经常遇到的生物医学,流行病学和社会科学研究。预计这些方法和软件实现将对故障时间建模的实践产生重大影响。 开源实现为删失数据回归的相对风险模型提供了一个现实的替代方案。 应用的方法正在进行的合作项目,激励拟议的研究具有跨界效应。 抑郁持续时间和主要压力源持续时间的双变量AFT模型为深入了解抑郁发作的发生和维持提供了一个新的视角。该项目通过本科生/研究生论文咨询,研究生水平课程以及统计学界和心理学界会议的短期课程与教育自然融合。公开可用的软件使那些在科学发现中需要它们的人可以使用尖端的统计方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Yan其他文献
Calculation of the Physical Optics Scattering by Trimmed NURBS Surfaces
修剪 NURBS 曲面的物理光学散射计算
- DOI:
10.1109/lawp.2014.2348564 - 发表时间:
2014-08 - 期刊:
- 影响因子:4.2
- 作者:
Jun Yan;Jun Hu;ZaipingNie - 通讯作者:
ZaipingNie
Magmatic Origin for Sediment-hosted Au Deposits, Guizhou Province, China: In-situ Chemistry and Sulfur Isotopic Composition of Pyrites, Shuiyindong and Jinfeng Deposits
中国贵州省沉积物金矿床的岩浆成因:黄铁矿、水银洞和金峰矿床的原位化学和硫同位素组成
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:5.8
- 作者:
Zhuojun Xie;Yong Xia;Jean S. Cline;Michael J. Pribil;Alan Koenig;Qinping Tan;Dongtian Wei;Zepeng Wang;Jun Yan - 通讯作者:
Jun Yan
長距離ランニング中の疾走動作の変容は「適応制御」なのか
长跑时冲刺动作的变化是“自适应控制”造成的吗?
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ryunosuke Oikawa;Goro Tajima;Jun Yan;Moritaka Maruyama;Atsushi Sugawara;Shinya Oikawa;Takaaki Saigo;Hirotaka Takahashi;Sho Kikuchi;Doita Minoru;関根正敏;山崎 健 - 通讯作者:
山崎 健
Depth Image Based Object Localization Using Binocular Camera and Dual-stream Convolutional Neural Network
使用双目相机和双流卷积神经网络进行基于深度图像的目标定位
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yimei Zhang;Chao Wu;Mengwei Yang;B. Kang;Jun Yan - 通讯作者:
Jun Yan
Nanoelectrodes to differentiate adipose derived stem cells into neural lineage
纳米电极将脂肪干细胞分化为神经谱系
- DOI:
10.1109/nano.2017.8117454 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
K. Garde;Jun Yan;S. Aravamudhan - 通讯作者:
S. Aravamudhan
Jun Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Yan', 18)}}的其他基金
Models and Inferences for Heterogeneous Interaction Patterns in Social Networks
社交网络中异构交互模式的模型和推论
- 批准号:
2210735 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Conference: UConn Sports Analytics Symposium: Engaging Students into Data Science
会议:康涅狄格大学体育分析研讨会:让学生参与数据科学
- 批准号:
2219336 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Probing moire flat bands with optical spectroscopy
用光谱法探测莫尔平坦带
- 批准号:
2004474 - 财政年份:2020
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Fingerprinting Methods for Detection and Attribution of Changes in Climate Extremes with Spatial Estimating Equations
利用空间估计方程检测和归因极端气候变化的指纹方法
- 批准号:
1521730 - 财政年份:2015
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Graphene Thermoelectric THz Direct and Heterodyne Detectors
石墨烯热电太赫兹直接和外差探测器
- 批准号:
1509599 - 财政年份:2015
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Unified Dynamic Modeling of Event Time Data with Semiparametric Profile Estimating Functions: Theory, Computing, and Applications
使用半参数轮廓估计函数对事件时间数据进行统一动态建模:理论、计算和应用
- 批准号:
0805965 - 财政年份:2008
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
相似海外基金
Statistical Inferences under Monotonic Hazard Trend in Survival Analysis
生存分析中单调危险趋势下的统计推断
- 批准号:
2311292 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Population genomic inferences of history and selection across populations and time
跨群体和时间的历史和选择的群体基因组推断
- 批准号:
10623079 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
"She must not know much about that": Children's inferences based on others' listener design
“她一定对此了解不多”:孩子们根据别人的听众设计做出的推断
- 批准号:
2317559 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Improving inferences on health effects of chemical exposures
改进对化学品暴露对健康影响的推断
- 批准号:
10753010 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Generative adversarial networks for demographic inferences of nonmodel species from genomic data
根据基因组数据对非模型物种进行人口统计推断的生成对抗网络
- 批准号:
NE/X009637/1 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Research Grant
Beyond 1D Structure of Earth's Core - Reconciling Inferences from Seismic and Geomagnetic Observations
超越地核的一维结构 - 协调地震和地磁观测的推论
- 批准号:
NE/W005247/1 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Research Grant
Interactions between ES-miRNAs and environmental risk factors are responsible for TNBC progression and associated racial health disparities: a novel analysis with multilevel moderation inferences
ES-miRNA 和环境风险因素之间的相互作用导致 TNBC 进展和相关种族健康差异:一项采用多级调节推论的新颖分析
- 批准号:
10594746 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Models and Inferences for Heterogeneous Interaction Patterns in Social Networks
社交网络中异构交互模式的模型和推论
- 批准号:
2210735 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Distance-based robust inferences and model selection for semiparametric models
半参数模型的基于距离的鲁棒推理和模型选择
- 批准号:
RGPIN-2018-04328 - 财政年份:2022
- 资助金额:
$ 13万 - 项目类别:
Discovery Grants Program - Individual