Second Order Inference for Nonstationary Time Series
非平稳时间序列的二阶推理
基本信息
- 批准号:1209091
- 负责人:
- 金额:$ 11.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research is on second order inferences for causal nonstationary processes. While a causal stationary process can be viewed as generated by filtering a set of past innovations, one can allow the filter to be time-changing, and henceforth introduce nonstationarity. Two sets of problems are considered. First, for linear models with nonstationary errors, the investigator addresses the estimation of covariance matrices of the least square estimates, as well as general M-estimates. Second, the PI studies the estimation of time-varying covariance functions, time-varying spectrum and covariance matrices of the observed time series. Simultaneous inferences of autocovariance functions and spectra can be used to study their patterns and trends, and are also of interests. The study requires several tools to be developed for nonstationary processes, including empirical processes, Gaussian approximations, strong invariance principles and large deviations for quadratic forms.Stationarity has played an important role in classical time series analysis, which basically says that the overall structure does not change over time. However, in many scientific fields, including economics, engineering, environmental science, finance, and neuroscience etc, it is not realistic to believe the observed time series are stationary. Results from the proposed research will be useful in understanding the nature of the data from various disciplines, making forecasts and conclusions.Furthermore, the second order inferences in the proposal are general and fundamental, and will facilitate further statistical analysis of nonstationary time series.
本文研究因果非平稳过程的二阶推理。虽然因果平稳过程可以被看作是通过过滤一组过去的新息而产生的,但人们可以允许过滤器是时变的,并且从此引入非平稳性。考虑两组问题。首先,对于具有非平稳误差的线性模型,研究者讨论了最小二乘估计的协方差矩阵的估计,以及一般的M-估计。其次,PI研究观测时间序列的时变协方差函数、时变谱和协方差矩阵的估计。自协方差函数和谱的同时推断可以用来研究它们的模式和趋势,也是令人感兴趣的。该研究需要为非平稳过程开发几种工具,包括经验过程,高斯近似,强不变性原理和二次型的大偏差。平稳性在经典时间序列分析中发挥了重要作用,基本上说,整体结构不随时间变化。然而,在许多科学领域,包括经济学、工程学、环境科学、金融学和神经科学等,认为观测到的时间序列是平稳的是不现实的。研究结果将有助于理解不同学科数据的性质,做出预测和结论,并且建议中的二阶推理是普遍和基本的,将有助于进一步对非平稳时间序列进行统计分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Han Xiao其他文献
X-ray computed tomography based microstructure reconstruction and numerical estimation of thermal conductivity of 2.5D ceramic matrix composite
基于X射线计算机断层扫描的2.5D陶瓷基复合材料微观结构重建和热导率数值估计
- DOI:
10.1016/j.ceramint.2017.04.157 - 发表时间:
2017-09 - 期刊:
- 影响因子:5.2
- 作者:
Gao Xiguang;Han Xiao;Song Yingdong - 通讯作者:
Song Yingdong
miR-30a enhances Paclitaxel Sensitivity in Non-small Cell Lung Cancer through Targeting BCL-2 Expression
miR-30a 通过靶向 BCL-2 表达增强非小细胞肺癌中紫杉醇的敏感性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xu Xiaojie;Jin Shuai;Ma Yongfu;Fan Zhongyi;Yan Zhifeng;Li Wenchao;Song Qi;You Wenye;Lv Zhaohui;Song Yeqiong;Shi Pingan;Liu Ying;Han Xiao;Li Ling;Li Ying;Liu Yang;Ye Qinong - 通讯作者:
Ye Qinong
HRD1, an Important Player in Pancreatic beta-Cell Failure and Therapeutic Target for Type 2 Diabetic Mice
HRD1,胰腺 β 细胞衰竭的重要参与者和 2 型糖尿病小鼠的治疗靶点
- DOI:
10.2337/db19-1060 - 发表时间:
2020 - 期刊:
- 影响因子:7.7
- 作者:
Wu Tijun;Zhang Shuang;Xu Jialiang;Zhang Yaqin;Sun Tong;Shao Yixue;Wang Jiahui;Tang Wei;Chen Fang;Han Xiao - 通讯作者:
Han Xiao
Effect of Crystallinity and Grain Size of Film on Mobility of C-60 Thin Film Transistors
薄膜结晶度和晶粒尺寸对 C-60 薄膜晶体管迁移率的影响
- DOI:
10.11862/cjic.2018.076 - 发表时间:
2018 - 期刊:
- 影响因子:0.7
- 作者:
Li Yi;Han Xiao;Sun Zhi Peng;Ma Yan Wen - 通讯作者:
Ma Yan Wen
Redox-Sensitive Nanoscale Coordination Polymers for Drug Delivery and Cancer Theranostics
用于药物输送和癌症治疗诊断的氧化还原敏感纳米级配位聚合物
- DOI:
10.1021/acsami.7b07535 - 发表时间:
2017 - 期刊:
- 影响因子:9.5
- 作者:
Zhao Jiayue;Yang Yu;Han Xiao;Liang Chao;Liu Jingjing;Song Xuejiao;Ge Zili;Liu Zhuang - 通讯作者:
Liu Zhuang
Han Xiao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Han Xiao', 18)}}的其他基金
ATD: Dynamic Modeling for Extreme Event Prediction with Uncertainty Quantification with Multi-panel Time Series
ATD:通过多面板时间序列不确定性量化进行极端事件预测的动态建模
- 批准号:
2319260 - 财政年份:2023
- 资助金额:
$ 11.91万 - 项目类别:
Standard Grant
相似国自然基金
基于Order的SIS/LWE变体问题及其应用
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
Poisson Order, Morita 理论,群作用及相关课题
- 批准号:19ZR1434600
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Fifth Workshop on Higher-Order Asymptotics and Post-Selection Inference; June 21-23, 2020; St. Louis, Missouri
第五届高阶渐近学和后选择推理研讨会;
- 批准号:
1954046 - 财政年份:2020
- 资助金额:
$ 11.91万 - 项目类别:
Standard Grant
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
- 批准号:
RGPIN-2015-04157 - 财政年份:2019
- 资助金额:
$ 11.91万 - 项目类别:
Discovery Grants Program - Individual
Reproducible Bayes, Higher order likelihood and Inference methodology
可重现的贝叶斯、高阶似然和推理方法
- 批准号:
RGPIN-2015-03794 - 财政年份:2019
- 资助金额:
$ 11.91万 - 项目类别:
Discovery Grants Program - Individual
Efficient Inference for Higher-Order Probabilistic Programs
高阶概率程序的高效推理
- 批准号:
2243853 - 财政年份:2019
- 资助金额:
$ 11.91万 - 项目类别:
Studentship
Reproducible Bayes, Higher order likelihood and Inference methodology
可重现的贝叶斯、高阶似然和推理方法
- 批准号:
RGPIN-2015-03794 - 财政年份:2018
- 资助金额:
$ 11.91万 - 项目类别:
Discovery Grants Program - Individual
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
- 批准号:
RGPIN-2015-04157 - 财政年份:2018
- 资助金额:
$ 11.91万 - 项目类别:
Discovery Grants Program - Individual
Third Workshop on Higher-Order Asymptotics and Post-Selection Inference
第三次高阶渐近学和后选择推理研讨会
- 批准号:
1812088 - 财政年份:2018
- 资助金额:
$ 11.91万 - 项目类别:
Standard Grant
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
- 批准号:
RGPIN-2015-04157 - 财政年份:2017
- 资助金额:
$ 11.91万 - 项目类别:
Discovery Grants Program - Individual
Reproducible Bayes, Higher order likelihood and Inference methodology
可重现的贝叶斯、高阶似然和推理方法
- 批准号:
RGPIN-2015-03794 - 财政年份:2017
- 资助金额:
$ 11.91万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Higher-Order Asymptotics and Accurate Inference for Post-Selection
合作研究:高阶渐进和后选择的精确推理
- 批准号:
1712839 - 财政年份:2017
- 资助金额:
$ 11.91万 - 项目类别:
Standard Grant