Statistical inference based on complex survey designs using rank information and order statistics

使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断

基本信息

  • 批准号:
    RGPIN-2015-04157
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2019
  • 资助国家:
    加拿大
  • 起止时间:
    2019-01-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

In many experiments, an important factor in implementing a statistically sound sampling design is the cost of taking measurements from sampling units. Sometimes researchers have access to some auxiliary information, or results of earlier surveys, expert-opinion knowledge, or inexpensive and useful measurements from the population that can be used to easily rank sampling units prior to taking final measurements on them. For example, consider the problem of estimation of bone mineral density in a human population. Subjects for such a study are plentiful, but measurement of bone mineral density via dual x-ray absorptiometry on the selected subjects is expensive. Thus, it is important to minimize the number of measurements required for such a study without reducing the amount of reliable information obtained about the bone mineral density makeup of the population. One successful strategy is to use expert-opinion knowledge on a large number of sampling units to identify more representative samples from the population from which the expensive bone mineral density measurement should be collected via dual x-ray absorptiometry. Rank-based sampling  designs provide a collection of techniques to obtain and analyze these expensive measurements with the help of inexpensive information.  These designs have found applications in fisheries, agricultural, environmental and ecological studies such as radiation (soil contamination and disease clusters) or pollution (water contamination and root disease of crops)  as well as in medical research, machine learning and image processing.***This research proposal focuses on developing new methodologies for parametric and nonparametric inference based on complex survey designs using rank information and order statistics in finite and infinite populations. The mathematical analysis will provide insight into the process of inference from rank-based data and suggest  new methodologies for efficient inference with such samples. The main objective is to answer broad research problems involving rank-based data from both the Bayesian and frequentist perspectives. I will also study the optimization opportunities that take into account quality of rankers, number of rankers, sample size and number of ranking classes.*** The research developments coming from this proposal will have many important applications. For example, the results could be of interest to Statistics Canada when designing surveys based on rank information; to Health Canada for water quality studies and environmental risk monitoring;  as well as to Fisheries and Oceans Canada for developing better methods for monitoring fisheries-related activities. The proposal would not only complement and extend the existing theory on rank-based sampling designs, but also has the potential to address methodological problems in other settings where observations involve censored and/or length-biased data. ******* **
在许多实验中,实现统计上合理的采样设计的一个重要因素是从采样单元进行测量的成本。有时,研究人员可以获得一些辅助信息,或早期调查的结果,专家意见知识,或来自人口的廉价而有用的测量结果,这些测量结果可以在对样本进行最终测量之前轻松地对样本进行排序。例如,考虑在人群中估计骨矿物质密度的问题。这种研究的对象是丰富的,但通过双X射线吸收测量法对选定的对象进行骨密度测量是昂贵的。因此,重要的是尽量减少这种研究所需的测量次数,而不减少获得的有关人群骨矿物质密度构成的可靠信息量。一个成功的策略是使用专家意见的知识,大量的抽样单位,以确定更有代表性的样本,从人口的昂贵的骨密度测量应收集通过双X射线吸收测量。基于秩的抽样设计提供了一系列技术,可以在廉价信息的帮助下获得和分析这些昂贵的测量结果。这些设计已在渔业,农业,环境和生态研究中得到应用,例如辐射(土壤污染和疾病集群)或污染(水污染和作物根部疾病)以及医学研究、机器学习和图像处理。*本研究建议的重点是开发新的方法参数和非参数推断的基础上复杂的调查设计,使用秩信息和顺序统计在有限和无限的人口。数学分析将提供洞察推理的过程中,基于排名的数据,并建议新的方法,有效的推理与这样的样本。主要目标是回答广泛的研究问题,涉及基于等级的数据从贝叶斯和频率论的角度。我还将研究考虑排名者质量、排名者数量、样本大小和排名类数量的优化机会。*这项建议所带来的研究进展将有许多重要的应用。例如,加拿大统计局在根据等级信息设计调查时可能会对结果感兴趣;加拿大卫生部在水质研究和环境风险监测方面可能会对结果感兴趣;加拿大渔业和海洋部在制定监测渔业相关活动的更好方法方面可能会对结果感兴趣。这一建议不仅将补充和扩展现有的基于等级的抽样设计理论,而且有可能解决在其他情况下的方法问题,其中观察涉及审查和/或长度偏差的数据。******* **

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JafariJozani, Mohammad其他文献

JafariJozani, Mohammad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JafariJozani, Mohammad', 18)}}的其他基金

Statistical Learning With Expert Knowledge and Complex Data
利用专业知识和复杂数据进行统计学习
  • 批准号:
    RGPIN-2020-05337
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Learning With Expert Knowledge and Complex Data
利用专业知识和复杂数据进行统计学习
  • 批准号:
    RGPIN-2020-05337
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Learning With Expert Knowledge and Complex Data
利用专业知识和复杂数据进行统计学习
  • 批准号:
    RGPIN-2020-05337
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
  • 批准号:
    RGPIN-2015-04157
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
  • 批准号:
    RGPIN-2015-04157
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Partial discharge source classification based on analyzing pd pulse waveforms using statistical pattern recognition techniques
基于使用统计模式识别技术分析局部放电脉冲波形的局部放电源分类
  • 批准号:
    499895-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Engage Grants Program
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
  • 批准号:
    RGPIN-2015-04157
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Developing a statistical methodology for sizing battery storage system for smoothing solar PV generation
开发一种统计方法来确定电池存储系统的规模,以平滑太阳能光伏发电
  • 批准号:
    492107-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Engage Grants Program
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
  • 批准号:
    RGPIN-2015-04157
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Decision theoretic inference in problems involving balanced loss functions, constraint parameter spaces and finite mixture models
涉及平衡损失函数、约束参数空间和有限混合模型问题的决策理论推理
  • 批准号:
    386575-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Statistical Procedures and Performance Measures for Simulator-Based Frequentist Inference
基于模拟器的频率推理的统计程序和性能测量
  • 批准号:
    2053804
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
International Indian Statistical Association 2020 Conference: Statistics in the Era of Evidence-Based Inference
国际印度统计协会2020年会议:循证推理时代的统计
  • 批准号:
    2020407
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
A study on statistical inference and survival analysis based on algebraic and geometric structures
基于代数和几何结构的统计推断和生存分析研究
  • 批准号:
    20K19752
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Black-Box Science: Ideas and Insights for Learning-Based Statistical Inference
黑盒科学:基于学习的统计推断的想法和见解
  • 批准号:
    2015400
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Statistical inference and uncertainty quantification for complex process-based models using multiple data sets
使用多个数据集对基于过程的复杂模型进行统计推断和不确定性量化
  • 批准号:
    NE/T00973X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Research Grant
Developments of statistical inference, prediction, and modeling methods for network meta-analysis
网络元分析统计推断、预测和建模方法的发展
  • 批准号:
    19H04074
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Inference Based on Real-World-Data
基于真实世界数据的统计推断
  • 批准号:
    19H04072
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments of extreme value theory based on monitoring data and its statistical inference
基于监测数据的极值理论及其统计推断的新进展
  • 批准号:
    19K04890
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical inference based on complex survey designs using rank information and order statistics
使用排名信息和顺序统计数据基于复杂的调查设计进行统计推断
  • 批准号:
    RGPIN-2015-04157
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Genealogical-based inference in statistical genetics
统计遗传学中基于谱系的推断
  • 批准号:
    435822-2013
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了