Collaborative Research: Mathematical Aspects of Interior Problem of Tomography
合作研究:层析成像内部问题的数学方面
基本信息
- 批准号:1210967
- 负责人:
- 金额:$ 8.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-15 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the long-standing paradigms in computed tomography (CT) is that CT detectors should be large enough to cover the entire cross-section of the patient. The reason for this requirement is that, according to the classical theory, image reconstruction from truncated CT data (the so-called "interior problem") is non-unique. As a consequence, many aspects of truncated data inversion have not been studied in literature. In this project the PIs will theoretically analyze the problem of image reconstruction from truncated data with minimal prior knowledge. Both transmission CT and emission tomography (SPECT) with constant attenuation will be addressed. The PIs will study the questions of stability of the reconstructions in 2D and 3D, characterize the null-space of an integral transform arising in the interior problem, and analyze eigenfunctions of certain singular Sturm-Liouville problems. The PIs will also develop efficient algorithms for numerical solution of the interior problem. These algorithms will be implemented and tested using both simulated and real data. At present, interior tomography is at the cusp of being directly applicable in general medical imaging diagnostics. The confluence of theoretical, algorithmic, computational, and technological advances gives the PIs hope that interior tomography can move from the "drawing boards" to practical medical imaging in the not so distant future. While there are still some open research problems, the results obtained recently show that the problems can be solved with a fairly high degree of confidence. If successful, this study will provide theoretically justified and practically applicable two and three-dimensional reconstruction algorithms for imaging a region of interest inside an object (e.g., the patient) from truncated data. The broader impact of the proposed research lies in the promise it holds for improvements in the practice of clinical medicine and biomedical science generally, as well as for industrial non-destructive testing. The most direct benefit is the reduction in the x-ray dose to the patient; other benefits include less expensive scanners, improved temporal resolution, increased scanner throughput, capability of imaging larger objects, reduced system cost, etc.
计算机断层扫描(CT)中一个长期存在的范例是CT探测器应该足够大,以覆盖患者的整个横截面。提出这一要求的原因是,根据经典理论,从截断的CT数据重建图像(即所谓的内部问题)不是唯一的。因此,截断数据反演的许多方面在文献中都没有得到研究。在这个项目中,PI将从理论上分析利用最少的先验知识从截断数据重建图像的问题。将讨论具有恒定衰减的透射式CT和发射型层析成像(SPECT)。PI将研究2D和3D重建的稳定性问题,刻画内部问题中出现的积分变换的零空间,并分析某些奇异Sturm-Liouville问题的本征函数。PI还将开发有效的算法来数值解决内部问题。这些算法将使用模拟数据和真实数据进行实施和测试。目前,内部层析成像正处于直接应用于普通医学影像诊断的边缘。理论、算法、计算和技术进步的融合给了PI希望,在不远的将来,内部断层扫描可以从“绘图板”转移到实际的医学成像。虽然仍有一些有待解决的研究问题,但最近取得的结果表明,这些问题可以有相当高的信心得到解决。如果成功,这项研究将提供理论上合理和实际适用的二维和三维重建算法,用于从截断数据中成像对象(例如,患者)内部的感兴趣区域。拟议研究的更广泛影响在于,它承诺改善临床医学和生物医学实践,以及工业无损检测。最直接的好处是减少了患者的X射线剂量;其他好处包括更便宜的扫描仪、更高的时间分辨率、更高的扫描仪吞吐量、对更大物体成像的能力、降低系统成本等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hengyong Yu其他文献
Total variation minimization-based multimodality medical image reconstruction
基于全变差最小化的多模态医学图像重建
- DOI:
10.1117/12.2062602 - 发表时间:
2014 - 期刊:
- 影响因子:3.8
- 作者:
Xuelin Cui;Hengyong Yu;Ge Wang;L. Mili - 通讯作者:
L. Mili
Determination of the exact reconstruction region in the cone-beam composite-circling mode
锥束复合环绕模式精确重建区域的确定
- DOI:
10.1117/12.791284 - 发表时间:
2008 - 期刊:
- 影响因子:3.8
- 作者:
L. Ye;Hengyong Yu;Ge Wang - 通讯作者:
Ge Wang
Review of CT image reconstruction open source toolkits.
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Liu Shi;Baodong Liu;Hengyong Yu;Cunfeng Wei;Long Wei;Li Zeng;Ge Wang - 通讯作者:
Ge Wang
General formulation for x-ray computed tomography
X 射线计算机断层扫描的通用公式
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Yuchuan Wei;Hengyong Yu;J. Hsieh;Ge Wang - 通讯作者:
Ge Wang
Skew cone beam lambda tomography
斜锥束 lambda 断层扫描
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Y. Ye;Hengyong Yu;Ge Wang - 通讯作者:
Ge Wang
Hengyong Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hengyong Yu', 18)}}的其他基金
CAREER:Development and Application of Compressive Sensing Based Interior Tomography
职业:基于压缩感知的室内层析成像技术的开发与应用
- 批准号:
1540898 - 财政年份:2015
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Aspects of Interior Problem of Tomography
合作研究:层析成像内部问题的数学方面
- 批准号:
1619550 - 财政年份:2014
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
CAREER:Development and Application of Compressive Sensing Based Interior Tomography
职业:基于压缩感知的室内层析成像技术的开发与应用
- 批准号:
1149679 - 财政年份:2012
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317570 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401258 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317572 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317569 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317571 - 财政年份:2024
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant
Collaborative Research: Supporting Pre-Service Teachers Mathematical Discourse through Co-Design of Teaching Simulation Tools
协作研究:通过教学模拟工具的共同设计支持职前教师的数学话语
- 批准号:
2315437 - 财政年份:2023
- 资助金额:
$ 8.67万 - 项目类别:
Standard Grant