Linear and Nonlinear Stability for Infinite-Dimensional Dynamical Systems
无限维动力系统的线性和非线性稳定性
基本信息
- 批准号:1211315
- 负责人:
- 金额:$ 21.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal focuses on the stability of waves for several models both in one and higher spatial dimensions. The common feature of these equations is that they can be viewed as dynamical systems on an infinite-dimensional space. These Hamiltonian PDEs support coherent structures such as solitary waves as well as periodic wave solutions. The PI will address open questions by developing a systematic approach to the spectral stability of waves for second order in time PDEs. An advantage of this method is that it treats both spatially periodic and solitary waves, which provides a link between the well studied results for solitary waves and the mostly open questions on periodic waves. These models are at the frontiers of current research and present lots of challenges at the spectral and linear stability level, but virtually nothing is known for their asymptotic stability. The PI studies will provide for better theoretical understanding of various nonlinear systems such as the beam equation, water waves and the Klein-Gordon model. Any progress on these questions will not only be important mathematically, but will find immediate applications in physical sciences. The PI will train the future researches by working with graduate and undergraduate students on the topics of the proposal. A special freshman seminar on nonlinear waves is being designed by the PI as part of a pilot First Year Seminar program at the University of Kansas. The PI has worked with students from local schools and is the main organizer for several mathematics competitions for school age kids. The students preparing for the competitions have been exposed to applied mathematics problems and have gained a better understanding of the role mathematics plays in modeling real life phenomena.
该提案的重点是在一个和更高的空间维度上的多种模型的波的稳定性。这些方程式的共同特征是它们可以在无限维空间上被视为动态系统。 这些Hamiltonian PDE支持相干结构,例如孤立波和周期性波解。 PI将通过开发系统的频谱稳定性来解决二阶PDES的波谱稳定性,以解决开放问题。该方法的一个优点是它同时处理空间周期性和孤立波,这在研究的孤立波和周期性波的大多数开放问题之间提供了联系。 这些模型位于当前研究的前沿,并在光谱和线性稳定性水平上提出了许多挑战,但实际上,几乎没有任何以其渐近稳定性而闻名的。 PI研究将提供对各种非线性系统(例如梁方程,水波和克莱因 - 戈登模型)的更好理论理解。这些问题上的任何进展不仅在数学上都很重要,而且会在物理科学中找到立即应用。 PI将与研究生和本科生有关该提案的主题,培训未来的研究。 PI是一项针对非线性波浪的特别新生研讨会,作为堪萨斯大学试点第一年研讨会计划的一部分。 PI曾与当地学校的学生合作,并且是几个数学比赛的主要组织者。为比赛做准备的学生已经暴露于应用数学问题,并更好地了解了数学在建模现实生活现象中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milena Stanislavova其他文献
A P ] 1 0 Fe b 20 20 GROUND STATES FOR THE NONLINEAR SCHRÖDINGER EQUATION UNDER A GENERAL TRAPPING POTENTIAL
A P ] 1 0 Fe b 20 20 一般俘获势下非线性薛定谔方程的基态
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Milena Stanislavova - 通讯作者:
Milena Stanislavova
Milena Stanislavova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milena Stanislavova', 18)}}的其他基金
Infinite-Dimensional Dynamical Systems - Stability and Long-Time Behavior
无限维动力系统 - 稳定性和长期行为
- 批准号:
2108285 - 财政年份:2021
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
Infinite-Dimensional Dynamical Systems - Stability and Long-Time Behavior
无限维动力系统 - 稳定性和长期行为
- 批准号:
2210867 - 财政年份:2021
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
Stability and Long Time Behavior for Infinite-Dimensional Dynamical Systems
无限维动力系统的稳定性和长时间行为
- 批准号:
1516245 - 财政年份:2015
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
Long-Time Behavior and Stability of Infinite-Dimensional Dynamical Systems
无限维动力系统的长期行为和稳定性
- 批准号:
0807894 - 财政年份:2008
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
Stability and Long-Time Behavior of Hamiltonian Partial Differential Equations
哈密顿偏微分方程的稳定性和长期行为
- 批准号:
0508184 - 财政年份:2005
- 资助金额:
$ 21.52万 - 项目类别:
Standard Grant
相似国自然基金
准静态的非线性热多孔弹性力学模型稳定的全离散多物理场有限元方法及其应用
- 批准号:12371393
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
异质电力电子多馈入系统非线性动态稳定机理分析与主动协同控制研究
- 批准号:52377111
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
非线性可积系统初边值问题的孤子解及其渐近性和稳定性研究
- 批准号:12371255
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
Banach空间非线性粗等距的稳定性及其应用
- 批准号:12301163
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多孔壁对高超声速边界层非线性不稳定性的影响机制研究
- 批准号:12302310
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Analysis and design methods of nonlinear control systems based on the model representation preserving nonlinearities
基于保留非线性模型表示的非线性控制系统分析与设计方法
- 批准号:
17560393 - 财政年份:2005
- 资助金额:
$ 21.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High-Order Non-Oscillatory Schemes for Nonlinear Conservation Laws with Source Terms
具有源项的非线性守恒定律的高阶非振荡方案
- 批准号:
15607006 - 财政年份:2003
- 资助金额:
$ 21.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical investigation on laminar-turbulent transition of flows through a rectangular duct
矩形管道流动层流-湍流转变的理论研究
- 批准号:
15560052 - 财政年份:2003
- 资助金额:
$ 21.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Parameter estimation with constraints and its stability in statistical model
统计模型中带约束的参数估计及其稳定性
- 批准号:
13680370 - 财政年份:2001
- 资助金额:
$ 21.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Localized And Homoclinic Solutions of a Nonlinear Wave Equation in Two-Dimensional Space
二维空间中非线性波动方程的定域同宿解
- 批准号:
13640395 - 财政年份:2001
- 资助金额:
$ 21.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)