Stability and Long Time Behavior for Infinite-Dimensional Dynamical Systems
无限维动力系统的稳定性和长时间行为
基本信息
- 批准号:1516245
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is on understanding the stability and long-time behavior of special solutions for partial differential equations. Specifically, the principal investigator considers equations used as models governing the motion of currents in the oceans and the propagation of pulses in optical fibers. Solitary and periodic waves, often observable in physical systems and lab experiments, are solutions of particular interest for these applications. The stability of solutions implies that they are persistent through small changes in the environment, impurities of the materials, imperfections of the model, etc. Results of the research can be used to address important problems, such as optimization, in engineering. This project addresses a variety of problems in partial differential equations, focusing on the study of stability and long-time behavior of coherent structures, such as periodic and solitary waves and more complicated excited states. The principal investigator uses the point of view of infinite-dimensional dynamical systems, which takes advantage of the analogy between partial and ordinary differential equations. The approach is to look at systems whose time evolution occurs on appropriately defined infinite-dimensional function spaces and use ordinary differential equation objects such as invariant manifolds and attractors, as well as more subtle connections. The proposal consists of two parts. The first part focuses on the linear stability of waves for several models, both in one and higher spatial dimensions. The principal investigator finds the spectral stability with a method that treats both spatially periodic and solitary waves equally well. Important examples here are the Boussinesq system and the short-pulse equation, and also the sine-Gordon and Klein-Gordon equations. These problems present many challenges at the spectral and linear stability level, but virtually nothing is known for their asymptotic stability. In the second part, the project focuses on the long-time behavior and nonlinear stability of waves for these models. Of interest is the relation between linear and nonlinear stability, particularly for wave equations where the generators for the semi-groups are operator matrices whose spectrum is not easy to compute. The common feature of these equations is that they support soliton-like solutions, such as ground or excited states and solitary or periodic traveling or standing waves.
该研究项目旨在了解偏微分方程特殊解的稳定性和长期行为。具体来说,主要研究人员考虑了用作控制海洋中电流运动和光纤中脉冲传播的模型的方程。通常在物理系统和实验室实验中观察到的孤立波和周期波是这些应用特别感兴趣的解决方案。解决方案的稳定性意味着它们在环境、材料的杂质、模型的缺陷等的微小变化中持续存在。研究结果可用于解决工程中的重要问题,例如优化。 该项目解决了偏微分方程中的各种问题,重点研究相干结构的稳定性和长期行为,例如周期波和孤立波以及更复杂的激发态。主要研究者使用无限维动力系统的观点,利用偏微分方程和常微分方程之间的类比。该方法是研究时间演化发生在适当定义的无限维函数空间上的系统,并使用常微分方程对象,例如不变流形和吸引子,以及更微妙的联系。该提案由两部分组成。第一部分重点关注几个模型的波的线性稳定性,无论是在一个空间维度还是更高的空间维度。首席研究员通过一种同样处理空间周期波和孤立波的方法发现了光谱稳定性。这里重要的例子是 Boussinesq 系统和短脉冲方程,以及 sine-Gordon 和 Klein-Gordon 方程。这些问题在谱和线性稳定性水平上提出了许多挑战,但实际上对其渐近稳定性一无所知。在第二部分中,该项目重点研究这些模型的波浪的长期行为和非线性稳定性。令人感兴趣的是线性和非线性稳定性之间的关系,特别是对于波动方程,其中半群的生成元是其谱不易计算的算子矩阵。这些方程的共同特征是它们支持类孤子解,例如基态或激发态以及孤立或周期性行波或驻波。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milena Stanislavova其他文献
On Global Finite Energy Solutions of the Camassa-Holm Equation
- DOI:
10.1007/s00041-005-4047-4 - 发表时间:
2005-08-08 - 期刊:
- 影响因子:1.200
- 作者:
Milena Stanislavova;Atanas Stefanov - 通讯作者:
Atanas Stefanov
Diffraction Managed Solitons with Zero Mean Diffraction
- DOI:
10.1007/s10884-006-9054-x - 发表时间:
2006-10-25 - 期刊:
- 影响因子:1.300
- 作者:
Milena Stanislavova - 通讯作者:
Milena Stanislavova
A P ] 1 0 Fe b 20 20 GROUND STATES FOR THE NONLINEAR SCHRÖDINGER EQUATION UNDER A GENERAL TRAPPING POTENTIAL
A P ] 1 0 Fe b 20 20 一般俘获势下非线性薛定谔方程的基态
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Milena Stanislavova - 通讯作者:
Milena Stanislavova
On the Spectral Problem $${\mathcal{L} u=\lambda u'}$$ and Applications
- DOI:
10.1007/s00220-015-2542-2 - 发表时间:
2015-12-24 - 期刊:
- 影响因子:2.600
- 作者:
Milena Stanislavova;Atanas Stefanov - 通讯作者:
Atanas Stefanov
Milena Stanislavova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milena Stanislavova', 18)}}的其他基金
Infinite-Dimensional Dynamical Systems - Stability and Long-Time Behavior
无限维动力系统 - 稳定性和长期行为
- 批准号:
2108285 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Infinite-Dimensional Dynamical Systems - Stability and Long-Time Behavior
无限维动力系统 - 稳定性和长期行为
- 批准号:
2210867 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Linear and Nonlinear Stability for Infinite-Dimensional Dynamical Systems
无限维动力系统的线性和非线性稳定性
- 批准号:
1211315 - 财政年份:2012
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Long-Time Behavior and Stability of Infinite-Dimensional Dynamical Systems
无限维动力系统的长期行为和稳定性
- 批准号:
0807894 - 财政年份:2008
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Stability and Long-Time Behavior of Hamiltonian Partial Differential Equations
哈密顿偏微分方程的稳定性和长期行为
- 批准号:
0508184 - 财政年份:2005
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
相似国自然基金
基于Relm-β核转位激活EndMT促进肺动脉高压研究肺心汤预防 Long COVID 机制
- 批准号:2025JJ90008
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
维生素D调控巨噬细胞极化在改善“Long COVID”中作用和机制的分子流行病学研究
- 批准号:82373643
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
- 批准号:LQ23H150003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
Long-TSLP和Short-TSLP佐剂对新冠重组蛋白疫苗免疫应答的影响与作用机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
水稻LONG PANICLE1基因调控穗长的分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
long-TSLP诱导的M2型巨噬细胞调控肺成纤维细胞线粒体融合在哮喘气道重塑中的作用和机制
- 批准号:81970032
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
LONG8及其互作蛋白LGIP1调控水稻籽粒大小的分子机理研究
- 批准号:31871219
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
拟南芥微管结合蛋白Long Seed1调控种子大小的分子机制研究
- 批准号:31770205
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
long-TSLP和short-TSLP调控肺成纤维细胞有氧糖酵解在哮喘气道重塑中的作用和机制研究
- 批准号:81700034
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
哮喘气道上皮来源long-TSLP/short-TSLP失衡对气道重塑中成纤维细胞活化的分子机制研究
- 批准号:81670026
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Biodegradable Polymer Nanodiscs as Novel Lipoprotein-Mimicking Nanocarriers for Anticancer Drug Delivery with High Stability and Long Circulation Time
可生物降解的聚合物纳米盘作为新型脂蛋白模拟纳米载体,用于高稳定性和长循环时间的抗癌药物输送
- 批准号:
2213969 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Infinite-Dimensional Dynamical Systems - Stability and Long-Time Behavior
无限维动力系统 - 稳定性和长期行为
- 批准号:
2108285 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Infinite-Dimensional Dynamical Systems - Stability and Long-Time Behavior
无限维动力系统 - 稳定性和长期行为
- 批准号:
2210867 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Addition of Final Bioanalytical Long-Term Stability Time Points for GLP Studies of TLC-ART 101 in Rats and Dogs
添加 TLC-ART 101 在大鼠和狗中的 GLP 研究的最终生物分析长期稳定性时间点
- 批准号:
10406219 - 财政年份:2021
- 资助金额:
$ 19.5万 - 项目类别:
CAREER: New Mechanisms for Stability, Regularity and Long Time Dynamics of Partial Differential Equations
职业:偏微分方程稳定性、正则性和长期动力学的新机制
- 批准号:
1945179 - 财政年份:2020
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Investigation of the effect of loop current with very long time constant on the stability of large superconducting coils
长时间常数环路电流对大型超导线圈稳定性影响的研究
- 批准号:
15K05974 - 财政年份:2015
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Long-Time Behavior and Stability of Infinite-Dimensional Dynamical Systems
无限维动力系统的长期行为和稳定性
- 批准号:
0807894 - 财政年份:2008
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Stability and Long-Time Behavior of Hamiltonian Partial Differential Equations
哈密顿偏微分方程的稳定性和长期行为
- 批准号:
0508184 - 财政年份:2005
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Bioactive glass-ceramics with high long-time stability on the basis of Apatite/Calcium-Zirconium-Orthophosphate
基于磷灰石/钙锆正磷酸盐的具有高长期稳定性的生物活性微晶玻璃
- 批准号:
5246392 - 财政年份:2000
- 资助金额:
$ 19.5万 - 项目类别:
Research Grants
Mathematical Sciences: Transport and Long Time Stability Dynamical Systems
数学科学:输运和长期稳定性动力系统
- 批准号:
9505017 - 财政年份:1995
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant














{{item.name}}会员




