Dynamics of compressible fluids near a free surface and collisional kinetic models

自由表面附近可压缩流体的动力学和碰撞动力学模型

基本信息

  • 批准号:
    1212142
  • 负责人:
  • 金额:
    $ 12.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

JangDMS-1212142 The investigator studies nonlinear partial differential equations arising in gas and fluid dynamics and related applications. The first topic regards the dynamics of compressible fluids near a moving boundary driven by gravity. The models considered in this topic include Euler equations in Newtonian gravity theory and relativistic Euler equations in special relativity, and two-fluid Navier-Stokes equations with constant viscosity. The focus is on the investigation of important physical phenomena such as gravitational collapse and Rayleigh-Taylor instability. The second topic concerns the qualitative behavior of collisional kinetic models such as Boltzmann equations and Fokker-Planck equations. The asymptotic behavior of Boltzmann equations in the presence of electromagnetic fields with focus on magnetohydrodynamic regimes is investigated when the mean free path is sufficiently small. Also the dynamics driven by Fokker-Planck collisions are studied on a bounded domain. Compressible fluids and gases are the common objects found everywhere in nature. The study of moving boundary problems for compressible fluids and the asymptotic limit of kinetic gases is very important because of their rich applications in mathematical sciences and engineering as well as the fascinating mathematics behind them. The investigation of the dynamics of fluids near a free surface and the dynamics of mesoscale collisions balanced with electromagnetic fields aims to advance knowledge in this fundamental area of mathematics. The problems addressed in this project are also very interesting to physicists, other scientists, and engineers. The results provide some foundational evidences to other disciplines such as astrophysics, plasma physics, aerodynamics, and computational physics, chemistry, and biology, and is expected to lead to scientific and technological advances.
JangDMS-1212142 研究非线性偏微分方程产生的气体和流体动力学及相关应用。 第一个主题涉及重力驱动的移动边界附近可压缩流体的动力学。 本课题考虑的模型包括牛顿引力理论中的欧拉方程和狭义相对论中的相对论欧拉方程,以及具有常粘性的双流体Navier-Stokes方程。 重点是研究重要的物理现象,如引力坍缩和瑞利-泰勒不稳定性。 第二个主题涉及碰撞动力学模型,如玻尔兹曼方程和福克-普朗克方程的定性行为。 研究了在电磁场作用下,当平均自由程足够小时,Boltzmann方程组的渐近行为。 在有界区域上研究了Fokker-Planck碰撞驱动的动力学。 可压缩流体和气体是自然界中随处可见的常见物体。 可压缩流体的动边界问题和运动气体的渐近极限问题的研究是非常重要的,因为它们在数学科学和工程中有着丰富的应用,以及它们背后迷人的数学。 对自由表面附近的流体动力学和与电磁场平衡的中尺度碰撞动力学的研究旨在推进数学这一基本领域的知识。 这个项目中解决的问题对物理学家、其他科学家和工程师来说也非常有趣。 这些结果为天体物理、等离子体物理、空气动力学、计算物理、化学和生物学等学科的发展提供了基础性依据,并有望推动科学技术的进步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juhi Jang其他文献

Transitions of blow-up mechanisms in $k$-equivariant harmonic map heat flow
$k$ 等变调和图热流中爆炸机制的转变
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juhi Jang;牧野哲;T. Kobayashi;Hiroyuki Inou;Yongqin Liu; Yoshihiro Ueda;Takemura Kouichi;廣澤史彦;Yukihiro Seki
  • 通讯作者:
    Yukihiro Seki
Linearized analysis of barotropic perturbations around spherically symmetric gaseous stars governed by the Euler-Poisson equations
由欧拉-泊松方程控制的球对称气态恒星周围正压扰动的线性化分析
  • DOI:
    10.1063/1.5088843
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Juhi Jang;Tetu Makino
  • 通讯作者:
    Tetu Makino
Spectral analysis of linearized non-radial oscillations of gaseous stars
气态恒星线性非径向振荡的光谱分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juhi Jang;牧野哲
  • 通讯作者:
    牧野哲
On Self-Similar Converging Shock Waves
On a local energy decay estimates of solutions to the Hyperbolic type Stokes equations
双曲型斯托克斯方程解的局部能量衰减估计
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Juhi Jang;牧野哲;T. Kobayashi
  • 通讯作者:
    T. Kobayashi

Juhi Jang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juhi Jang', 18)}}的其他基金

Singularities and stability in compressible fluids with or without gravity
有或没有重力的可压缩流体的奇异性和稳定性
  • 批准号:
    2306910
  • 财政年份:
    2023
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Standard Grant
Long time dynamics of compressible fluids and kinetic theory with boundaries
可压缩流体的长时间动力学和边界动力学理论
  • 批准号:
    2009458
  • 财政年份:
    2020
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Standard Grant
CAREER: PDE approaches to Physical Phenomena driven by Gravity and Diffusion
职业:偏微分方程研究重力和扩散驱动的物理现象
  • 批准号:
    1608494
  • 财政年份:
    2015
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Continuing Grant
Dynamics of compressible fluids near a free surface and collisional kinetic models
自由表面附近可压缩流体的动力学和碰撞动力学模型
  • 批准号:
    1608492
  • 财政年份:
    2015
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Standard Grant
CAREER: PDE approaches to Physical Phenomena driven by Gravity and Diffusion
职业:偏微分方程研究重力和扩散驱动的物理现象
  • 批准号:
    1351898
  • 财政年份:
    2014
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Continuing Grant

相似海外基金

Singularities and stability in compressible fluids with or without gravity
有或没有重力的可压缩流体的奇异性和稳定性
  • 批准号:
    2306910
  • 财政年份:
    2023
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Standard Grant
Long time dynamics of compressible fluids and kinetic theory with boundaries
可压缩流体的长时间动力学和边界动力学理论
  • 批准号:
    2009458
  • 财政年份:
    2020
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Standard Grant
Stability analysis of compressible viscous fluids and related problems
可压缩粘性流体的稳定性分析及相关问题
  • 批准号:
    17K14216
  • 财政年份:
    2017
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Mathematical Analysis of space-time nonuniform dynamics of equations for viscous compressible fluids
粘性可压缩流体时空非均匀动力学方程的数学分析
  • 批准号:
    16H03947
  • 财政年份:
    2016
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Dynamics of compressible fluids near a free surface and collisional kinetic models
自由表面附近可压缩流体的动力学和碰撞动力学模型
  • 批准号:
    1608492
  • 财政年份:
    2015
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Standard Grant
SusCHEM: Mixtures of Ionic Liquids with Compressible Fluids for Biopolymer Separations and Processing of Lignocellulosic Materials
SusCHEM:离子液体与可压缩流体的混合物,用于木质纤维素材料的生物聚合物分离和加工
  • 批准号:
    1509390
  • 财政年份:
    2015
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Standard Grant
Global behavior of compressible viscous gases and fluids
可压缩粘性气体和流体的整体行为
  • 批准号:
    21540185
  • 财政年份:
    2009
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
STTR Phase I: Compressible Magnetorheological Fluids
STTR 第一阶段:可压缩磁流变液
  • 批准号:
    0930398
  • 财政年份:
    2009
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Standard Grant
Analysis of free boundary problems and compressible fluids equations
自由边界问题和可压缩流体方程分析
  • 批准号:
    341253-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Discovery Grants Program - Individual
STTR Phase I: Compressible Magnetorheological Fluids
STTR 第一阶段:可压缩磁流变液
  • 批准号:
    0637956
  • 财政年份:
    2007
  • 资助金额:
    $ 12.27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了