High Efficiency Multimode Quantum Memory Using Atomic Frequency Combs in an Optical Cavity
在光腔中使用原子频率梳的高效多模量子存储器
基本信息
- 批准号:1212360
- 负责人:
- 金额:$ 25.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum memory that faithfully stores and retrieve quantum states is a basic building block for quantum repeaters in long-distance quantum communication. Among the existing approaches to implementing quantum memories, the atomic frequency comb (AFC) in rare-earth ensemble is identified for its outstanding potential, which includes memory efficiency up to 100%, high fidelity, long storage times up to seconds, a large time-bandwidth product for a high bit rate up to gigabit/s, multi-mode capacity, a large range of operational wavelengths, and being solid-state with a relatively simple setup using off-the-shelf components. Achieving high efficiency is the corner stone to fully realize theis potential. Currently, the two major obstacles preventing optimal efficiency are the low absorption length and poorly-formed spectral and spatial structures in the AFC. In this NSF supported project, two novel schemes are combined to solve the problems: employing a low finesse optical cavity to boost the absorption length, and using various temporal, spectral and spatial configurations to optimize the AFC structure. The main efforts will focus on understanding the physics and developing critical enabling techniques in preparing the AFC in rare-earth ensembles and in the storage/retrieving process. We plan to use thulium ions doped crystals as prototype materials to develop and test the schemes. The resulting methods and techniques are expected to be applicable to similar rare-earth ensembles.The supported project will have broad impact in advancing quantum information science and technology. The project aims at great advances in quantum memories towards practical devices, which will find applications in both long-distance quantum communication and distributed quantum computation. The investigation will also lead to better understanding of quantum theory, such as decoherence, entanglement, and quantum no-cloning theorem. Education is an important component in this project. The efforts focus on cultivating a new generation of scientists and engineers in quantum information-related fields and contributing to the diversity of the scientific workforce. An on-line quantum mechanics course will be developed for high school science teachers so that our K-12 school system will be better prepared to introduce quantum concepts to students at young age. Undergraduate and graduate students will be recruited to the field by introducing new developments in the quantum information frontier into existing quantum mechanics courses, and by providing students research opportunities in the project.
忠实地存储和检索量子态的量子存储器是长距离量子通信中量子中继器的基本构建块。在现有的实现量子存储器的方法中,稀土系综中的原子频率梳(AFC)被认为具有突出的潜力,其包括高达100%的存储效率、高保真度、长达数秒的存储时间、高达千兆比特/秒的高比特率的大时间带宽积、多模容量、大范围的操作波长,并且是固态的,具有使用现成组件的相对简单的设置。实现高效率是充分发挥其潜力的基石。目前,阻碍最佳效率的两个主要障碍是AFC中的低吸收长度和不良形成的光谱和空间结构。在这个NSF支持的项目中,两个新的方案相结合,以解决问题:采用低精细光学腔,以提高吸收长度,并使用各种时间,光谱和空间配置,以优化AFC结构。主要工作将集中在理解物理学和开发关键的使能技术,在准备AFC的稀土合奏和存储/检索过程中。我们计划使用掺铥离子的晶体作为原型材料来开发和测试该方案。研究成果有望应用于类似的稀土系综,对推动量子信息科学与技术的发展具有重要意义。该项目旨在量子存储器向实用设备的巨大进步,这将在长距离量子通信和分布式量子计算中找到应用。研究也将导致更好地理解量子理论,如退相干,纠缠和量子不可克隆定理。教育是这个项目的一个重要组成部分。这些努力的重点是培养量子信息相关领域的新一代科学家和工程师,并为科学劳动力的多样性做出贡献。将为高中科学教师开发一个在线量子力学课程,以便我们的K-12学校系统能够更好地准备向年轻的学生介绍量子概念。本科生和研究生将通过将量子信息前沿的新发展引入现有的量子力学课程,并通过为学生提供项目研究机会,被招募到该领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingzhen Tian其他文献
Toward Consistent High-Fidelity Quantum Learning on Unstable Devices via Efficient In-Situ Calibration
通过高效的原位校准在不稳定设备上实现一致的高保真量子学习
- DOI:
10.1109/qce57702.2023.00099 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhirui Hu;Robert Wolle;Mingzhen Tian;Qiang Guan;Travis S. Humble;Weiwen Jiang - 通讯作者:
Weiwen Jiang
Entanglement criterion of computable cross norm and realignment for continuous-variable bipartite symmetric states
连续变量二分对称态的可计算交叉范数和重排的纠缠准则
- DOI:
10.1103/physreva.89.012332 - 发表时间:
2012-11 - 期刊:
- 影响因子:2.9
- 作者:
蒋丽珍;陈小余;Ping Yu;Mingzhen Tian - 通讯作者:
Mingzhen Tian
Necessary and sufficient fully separable criterion and entanglement of three-qubit Greenberger–Horne–Zeilinger diagonal states
三量子位 Greenberger-Horne-Zeilinger 对角态的充分可分判据与纠缠
- DOI:
10.1007/s11128-015-0990-4 - 发表时间:
2015-07 - 期刊:
- 影响因子:0
- 作者:
陈小余;Li-zhen Jiang;Ping Yu;Mingzhen Tian - 通讯作者:
Mingzhen Tian
Numerical modeling of optical coherent transient processes with complex configurations—III: Noisy laser source
- DOI:
10.1016/j.jlumin.2007.02.041 - 发表时间:
2007-11-01 - 期刊:
- 影响因子:
- 作者:
Tiejun Chang;Mingzhen Tian - 通讯作者:
Mingzhen Tian
Mingzhen Tian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingzhen Tian', 18)}}的其他基金
EAGER: QIA: Optimal Synthesis Algorithms for Few-Qubit Fault-Tolerance
EAGER:QIA:少量子位容错的最佳合成算法
- 批准号:
2038024 - 财政年份:2020
- 资助金额:
$ 25.81万 - 项目类别:
Standard Grant
相似海外基金
ERI: Study of quantum entanglement and spatially different photon pair generation through intermodal four-wave mixing in few-mode and multimode fibers
ERI:通过少模和多模光纤中的模间四波混频研究量子纠缠和空间不同的光子对生成
- 批准号:
2301870 - 财政年份:2023
- 资助金额:
$ 25.81万 - 项目类别:
Standard Grant
ExpandQISE Track 1: Quantum information exchange over spatially-multimode and multi-core optical fibers
ExpandQISE Track 1:通过空间多模和多芯光纤进行量子信息交换
- 批准号:
2231388 - 财政年份:2022
- 资助金额:
$ 25.81万 - 项目类别:
Standard Grant
Multimode Continuous-Variable Quantum Optics for Precision Sensing
用于精密传感的多模连续可变量子光学器件
- 批准号:
2207767 - 财政年份:2022
- 资助金额:
$ 25.81万 - 项目类别:
Continuing Grant
Temporal Multimode Transformations for Quantum Information Science
量子信息科学的时态多模变换
- 批准号:
2112900 - 财政年份:2021
- 资助金额:
$ 25.81万 - 项目类别:
Standard Grant
RUI: Free Space Multimode Quantum Optics
RUI:自由空间多模量子光学
- 批准号:
1806479 - 财政年份:2018
- 资助金额:
$ 25.81万 - 项目类别:
Standard Grant
Multimode dynamics of semiconductor quantum-dot lasers
半导体量子点激光器的多模动力学
- 批准号:
404943123 - 财政年份:2018
- 资助金额:
$ 25.81万 - 项目类别:
Research Fellowships
Temporal-Spectral Multimode Photonics for Quantum Information Science
用于量子信息科学的时谱多模光子学
- 批准号:
1620822 - 财政年份:2016
- 资助金额:
$ 25.81万 - 项目类别:
Continuing Grant
CAREER: Novel Nonlinear and Quantum Multimode Optical Fiber and Waveguide Devices
职业:新型非线性和量子多模光纤和波导器件
- 批准号:
1522933 - 财政年份:2015
- 资助金额:
$ 25.81万 - 项目类别:
Standard Grant
RUI: Quantum Fidelity in Multimode Optical Memory
RUI:多模光存储器中的量子保真度
- 批准号:
1506049 - 财政年份:2015
- 资助金额:
$ 25.81万 - 项目类别:
Continuing Grant
CAREER: Novel Nonlinear and Quantum Multimode Optical Fiber and Waveguide Devices
职业:新型非线性和量子多模光纤和波导器件
- 批准号:
1253233 - 财政年份:2013
- 资助金额:
$ 25.81万 - 项目类别:
Standard Grant