ExpandQISE Track 1: Quantum information exchange over spatially-multimode and multi-core optical fibers
ExpandQISE Track 1:通过空间多模和多芯光纤进行量子信息交换
基本信息
- 批准号:2231388
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical description:Quantum communication uses fundamental laws of physics to securely exchange private information over untrusted networks and to establish quantum correlations among distant network nodes, which could be used for high-performance distributed quantum computing and ultra-precise quantum sensing. The capacity of quantum communication links is limited by the unavoidable losses of optical fibers connecting the nodes, and the only way to grow the quantum information exchange rate at a given distance is to increase the number of degrees of freedom (modes) over which the information is transmitted. While polarization and frequency / time modes have already received a lot of attention, one untapped resource for quantum information exchange over long fiber links is the spatial degrees of freedom of light in few-mode, multimode, and multi-core optical fibers. In this project, the research team harnesses the spatial degrees of freedom of light for carrying the quantum information over significant distances in optical fibers. Several types of high-capacity quantum communication links are investigated, ranging from a set of totally independent spatial quantum channels to links using spatial modes for high-dimensional data encoding. The project pairs University of Texas at Arlington, which has a nascent Quantum Information Science and Technology (QISE) program, with well-established and vibrant QISE research effort at Northwestern University. Through the joint research and student exchange, as well as collaboration with industrial and worldwide partners, the students of all levels, including those of underrepresented groups, are being trained at the forefronts of quantum science and optical communications. This collaborative work and the associated broad public and K-12 outreach activities, such as high-school summer camps and Engineering Week’s open lab visits and demos, aim to establish University of Texas at Arlington as a center for the emerging and productive QISE research community in North Texas. Technical description:This project’s goal is to increase the quantum communication capacity by exploiting spatial degrees of freedom of optical fibers. It extends the methods used in classical space-division multiplexing to the quantum domain to develop several types of high-capacity quantum communication links. These range from a set of totally independent spatial quantum channels to links maintaining full spatial coherence across many fiber modes or cores for transmission of quantum information encoded in high-dimensional spatial Hilbert space. The project employs a systematic approach to real-time characterization and inversion of the input-output transfer matrix of an optical fiber to enable the delivery of parallel-channel or high-dimensional qubits over metroscale distances, thus dramatically increasing the quantum communication capacity or rate at such reach. These techniques may also enable the transmission of spatially-broadband quantum states (quantum images) over km-scale lengths of multimode fiber, which can be useful in quantum sensing and metrology applications. The work engages the students with several industrial partners on development of customized few-mode and multi-core fibers, as well as fiber in/out couplers. A field-test of the developed methods is to be conducted over installed fibers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:量子通信使用基本物理定律在不可信的网络上安全地交换私人信息,并在遥远的网络节点之间建立量子关联,这可以用于高性能的分布式量子计算和超精密的量子传感。量子通信链路的容量受到连接节点的光纤不可避免的损耗的限制,而在给定距离上增加量子信息交换率的唯一方法是增加传输信息的自由度(模式)的数量。虽然偏振模和频率/时间模已经受到了很大的关注,但在长光纤链路上进行量子信息交换的一个尚未开发的资源是少模、多模和多芯光纤中的光的空间自由度。在这个项目中,研究小组利用光的空间自由度在光纤中传输相当长的距离的量子信息。研究了几种类型的大容量量子通信链路,从一组完全独立的空间量子信道到使用空间模式进行高维数据编码的链路。该项目将德克萨斯大学阿灵顿分校的量子信息科学与技术(QISE)项目与西北大学成熟而充满活力的QISE研究工作结合起来。通过联合研究和学生交流,以及与工业界和世界各地合作伙伴的合作,各级学生,包括那些代表性不足的群体的学生,正在量子科学和光学通信的前沿接受培训。这项合作工作以及相关的广泛公众和K-12外联活动,如高中夏令营和工程周的开放实验室访问和演示,旨在将德克萨斯大学阿灵顿分校打造为德克萨斯州北部新兴且富有成效的QISE研究社区的中心。技术描述:该项目的目标是通过利用光纤的空间自由度来增加量子通信容量。它将经典空分复用中使用的方法扩展到量子领域,以开发几种类型的大容量量子通信链路。这些方案的范围从一组完全独立的空间量子通道到在高维空间希尔伯特空间中编码的量子信息的传输中跨许多光纤模式或纤芯保持完全空间相干性的链路。该项目采用了一种系统的方法来实时表征和反转光纤的输入-输出传输矩阵,以实现在米级距离上传输并行通道或高维量子比特,从而显著提高这种距离的量子通信容量或速率。这些技术还可以使空间宽带量子态(量子图像)能够在千米级的多模光纤上传输,这在量子传感和计量应用中可能是有用的。这项工作让学生和几个工业合作伙伴一起开发定制的少模和多芯光纤,以及光纤输入/输出耦合器。开发的方法的现场测试将在已安装的光纤上进行。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Vasilyev其他文献
Michael Vasilyev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Vasilyev', 18)}}的其他基金
EAGER: Spatial-Mode Entanglement and Spatial-Mode-Selective Quantum Frequency Conversion in Few-Mode Fibers
EAGER:少模光纤中的空间模式纠缠和空间模式选择性量子频率转换
- 批准号:
1937860 - 财政年份:2019
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: Multichannel All-Optical Signal-Processing Devices Based on a Group-Delay-Managed Nonlinear Medium
合作研究:基于群时延管理非线性介质的多通道全光信号处理器件
- 批准号:
0925860 - 财政年份:2009
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
Collaborative Research: Mathematical and Engineering Study of Multi-Channel All-Optical Regenerator
合作研究:多通道全光再生器的数学与工程研究
- 批准号:
0507540 - 财政年份:2005
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
相似海外基金
ExpandQISE: Track 1: Quantum@MTSU: Building QISE Research and Education in Middle Tennessee
展开QISE:轨道 1:Quantum@MTSU:在田纳西州中部建立 QISE 研究和教育
- 批准号:
2328752 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
ExpandQISE: Track 2: EQUIP-UMB-Expand Quantum Information Programs at UMass Boston
ExpandQISE:轨道 2:EQUIP-UMB-扩展麻省大学波士顿分校的量子信息项目
- 批准号:
2328774 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
ExpandQISE: Track 2: Expanding Quantum Research and Education at Winston-Salem State University with Research on Hybrid Microwave-Optical Quantum Devices
ExpandQISE:轨道 2:通过混合微波光量子器件的研究扩大温斯顿塞勒姆州立大学的量子研究和教育
- 批准号:
2329017 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
ExpandQISE: Track 1: A Quantum Good Network Protocol (QGP) and Implementation for Security-Enhanced Network Authentication
ExpandQISE:轨道 1:量子良好网络协议 (QGP) 和安全增强型网络身份验证的实现
- 批准号:
2329053 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
ExpandQISE: Track 1: Collaborative Optimization and Management for Iterative and Parallel Quantum Computing
ExpandQISE:轨道 1:迭代和并行量子计算的协作优化和管理
- 批准号:
2329020 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
ExpandQISE: Track 2: Leveraging synthetic degrees of freedom for quantum state engineering in photonic chips
ExpandQISE:轨道 2:利用光子芯片中量子态工程的合成自由度
- 批准号:
2328993 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
ExpandQISE: Track 2: A Quantum Science Education and Research Program for HBCUs: Exotic Physics and Applications of Solid-State Qubits
ExpandQISE:轨道 2:HBCU 的量子科学教育和研究计划:奇异物理学和固态量子位的应用
- 批准号:
2329067 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
ExpandQISE: Track 1: Harnessing a scalable platform to demonstrate multipartite quantum effects under strict conditions
ExpandQISE:轨道 1:利用可扩展平台在严格条件下演示多部分量子效应
- 批准号:
2328800 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
ExpandQISE: Track 1: Investigating biomass pretreatment with nanodiamond quantum sensors
ExpandQISE:轨道 1:利用纳米金刚石量子传感器研究生物质预处理
- 批准号:
2328837 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
ExpandQISE: Track 1: Analog quantum simulation of non-Markovian dynamics of multi-qubit systems
ExpandQISE:轨道 1:多量子位系统非马尔可夫动力学的模拟量子模拟
- 批准号:
2328948 - 财政年份:2023
- 资助金额:
$ 80万 - 项目类别:
Standard Grant