Quantum Interface Between Atomic and Superconducting Qubits

原子和超导量子位之间的量子接口

基本信息

  • 批准号:
    1212448
  • 负责人:
  • 金额:
    $ 54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

While there has been tremendous recent progress in the realization of small-scale quantum circuits comprising several qubits, research indicates that a fault-tolerant quantum computer that exceeds what is possible on existing classical machines will require a network of thousands of qubits, far beyond current capabilities. One possible approach involves a hybrid quantum information processing (QIP) network that would capitalize on the unique strengths of disparate quantum technologies. Here we outline a research program focused on the development of a robust quantum interface between superconducting cavity circuits and trapped Rydberg atoms, the key technological obstacle to realization of atom-superconductor hybrid QIP. The research program includes the following specific experimental thrusts: single atoms will be trapped and guided into close proximity with a millikelvin-temperature superconducting thin-film cavity; strong coupling between single trapped Rydberg atoms and the cavity will be probed spectroscopically; and deterministic generation of single microwave photons by a superconducting qubit will be used to enable an entangling gate between the atomic and superconducting systems. The development of a high-fidelity quantum interface between a trapped atom qubit and a superconducting microwave cavity will represent a significant step towards a hybrid quantum computer. This program will involve the extensive participation of undergraduate and graduate researchers, and is rich in educational opportunities at both levels.One of the remarkable recent discoveries in information science is that quantum mechanics can lead to efficient solutions for problems that are intractable on conventional classical computers. In a quantum computer, information is stored in quantum bits or "qubits" that can exist not only in states 0 or 1, but also in arbitrary superpositions of these states. Robust operation of a quantum computer requires both long lifetimes for these quantum superpositions, along with the ability to interact qubits with one another on timescales that are much shorter than the qubit lifetime. For a given system of physical qubits, the requirements of long lifetime and fast interaction speed are generally at odds with one another. One possible approach to scalable quantum computing involves an optimized hybrid quantum processor that combines the best aspects of disparate quantum technologies. In this program, we are working toward a hybrid quantum processor that incorporates a stable neutral atom quantum memory, with storage times of order 1 second, and a fast superconducting quantum processor capable of interacting qubits on timescales of order 10 nanoseconds. We seek to address the key obstacle to the merger of neutral atom and superconducting quantum technologies, namely, a robust interface between trapped atomic qubits and superconducting quantum cavities. Successful realization of our program will represent a major step toward scalable hybrid quantum information processing. This program will involve the extensive participation of undergraduate and graduate researchers, and is rich in educational opportunities at both levels.
虽然最近在实现由几个量子比特组成的小规模量子电路方面取得了巨大的进展,但研究表明,超过现有经典机器可能实现的容错量子计算机将需要数千个量子比特的网络,远远超出当前的能力。一种可能的方法涉及混合量子信息处理(QIP)网络,该网络将利用不同量子技术的独特优势。在这里,我们概述了一个研究计划,重点是超导腔电路和被困里德伯原子之间的强大的量子接口的发展,实现原子-超导体混合QIP的关键技术障碍。该研究计划包括以下具体的实验推力:单个原子将被捕获并引导到一个毫开尔文温度的超导薄膜腔的附近;单个被捕获的里德伯原子和腔之间的强耦合将被光谱探测;超导量子比特确定性地产生单个微波光子将用于实现原子和超导系统之间的纠缠门。在被囚禁的原子量子比特和超导微波腔之间开发高保真量子接口将是迈向混合量子计算机的重要一步。该计划将涉及本科生和研究生研究人员的广泛参与,并在这两个层次的教育机会丰富。最近在信息科学中的一个引人注目的发现是,量子力学可以为传统经典计算机上难以解决的问题带来有效的解决方案。 在量子计算机中,信息存储在量子比特或“量子比特”中,量子比特不仅可以存在于状态0或1中,而且可以存在于这些状态的任意叠加中。量子计算机的稳健运行需要这些量子叠加的长寿命,沿着在比量子比特寿命短得多的时间尺度上相互作用量子比特的能力。对于给定的物理量子比特系统,长寿命和快速相互作用速度的要求通常是相互矛盾的。可扩展量子计算的一种可能方法涉及优化的混合量子处理器,该处理器结合了不同量子技术的最佳方面。在这个项目中,我们正在努力实现一个混合量子处理器,它包含一个稳定的中性原子量子存储器,存储时间为1秒,以及一个快速超导量子处理器,能够在10纳秒的时间尺度上相互作用量子位。我们试图解决中性原子和超导量子技术合并的关键障碍,即,被困原子量子比特和超导量子腔之间的鲁棒接口。我们计划的成功实现将代表着迈向可扩展混合量子信息处理的重要一步。该计划将涉及本科生和研究生研究人员的广泛参与,并在这两个层次的教育机会丰富。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert McDermott其他文献

Microwave engineering for semiconductor quantum dots in a cQED architecture
cQED 架构中半导体量子点的微波工程
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nathan Holman;J. Dodson;Lisa F. Edge;S. Coppersmith;S. Coppersmith;M. Friesen;Robert McDermott;M. Eriksson
  • 通讯作者:
    M. Eriksson
Review of Integral Yoga Psychology: Metaphysics & Transformation as Taught by Sri Aurobindo, edited by Debashish Banerji
  • DOI:
    10.1007/s11841-020-00800-w
  • 发表时间:
    2020-11-16
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Robert McDermott
  • 通讯作者:
    Robert McDermott
High fidelity readout of a transmon qubit using a superconducting low-inductance undulatory galvanometer microwave amplifier
使用超导低电感波动检流计微波放大器对传输量子位进行高保真度读出
  • DOI:
    10.1088/1367-2630/16/11/113008
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Yanbing Liu;Srikanth Srinivasan;Srikanth Srinivasan;D. Hover;Shaojiang Zhu;Robert McDermott;Andrew Houck
  • 通讯作者:
    Andrew Houck
Scalable Quantum Computing Infrastructure Based on Superconducting Electronics
基于超导电子学的可扩展量子计算基础设施
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Mukhanov;B. Plourde;A. Opremcak;C. H. Liu;Robert McDermott;A. Kirichenko;C. Howington;J. Walter;M. Hutchings;Igor V. Vernik;Daniel Yohannes;K. Dodge;A. Ballard
  • 通讯作者:
    A. Ballard
Calculated signal-to-noise ratio of MRI detected with SQUIDs and Faraday detectors in fields from 10 μT to 1.5 T
  • DOI:
    10.1016/j.jmr.2007.02.007
  • 发表时间:
    2007-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Whittier Myers;Daniel Slichter;Michael Hatridge;Sarah Busch;Michael Mößle;Robert McDermott;Andreas Trabesinger;John Clarke
  • 通讯作者:
    John Clarke

Robert McDermott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert McDermott', 18)}}的其他基金

Collaborative Research: Proximal Digital Control and Stabilization of Superconducting Qubits
合作研究:超导量子位的近端数字控制和稳定
  • 批准号:
    1720304
  • 财政年份:
    2017
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Microwave Counting Statistics of Quantum Electronic Systems
量子电子系统的微波计数统计
  • 批准号:
    1105178
  • 财政年份:
    2011
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Investigations of Quantum Coherence in Josephson Junctions and Superconducting Circuits
约瑟夫森结和超导电路中量子相干性的研究
  • 批准号:
    0805051
  • 财政年份:
    2008
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant

相似海外基金

A prototype interface between neutral-atom quantum processors and superconducting circuits
中性原子量子处理器和超导电路之间的原型接口
  • 批准号:
    EP/Y022688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Research Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/2
  • 财政年份:
    2024
  • 资助金额:
    $ 54万
  • 项目类别:
    Research Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/1
  • 财政年份:
    2023
  • 资助金额:
    $ 54万
  • 项目类别:
    Research Grant
On the interface between Quantum and Algorithmic Information Theory
论量子与算法信息论的接口
  • 批准号:
    567715-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 54万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Machine Learning as the Interface Between Quantum and Classical Computation
机器学习作为量子和经典计算之间的接口
  • 批准号:
    2127827
  • 财政年份:
    2018
  • 资助金额:
    $ 54万
  • 项目类别:
    Studentship
Quantum Interface between Gamma-Photons - Nuclear Ensembles
伽马光子之间的量子界面 - 核系综
  • 批准号:
    1506467
  • 财政年份:
    2015
  • 资助金额:
    $ 54万
  • 项目类别:
    Continuing Grant
Exploring new quantum phases in the interface between topological insulator and ferromagnet
探索拓扑绝缘体和铁磁体之间界面的新量子相
  • 批准号:
    25871133
  • 财政年份:
    2013
  • 资助金额:
    $ 54万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
New Physics at the Interface Between the Classical and Quantum Worlds
经典世界与量子世界之间的新物理学
  • 批准号:
    EP/I004831/2
  • 财政年份:
    2011
  • 资助金额:
    $ 54万
  • 项目类别:
    Fellowship
New Physics at the Interface Between the Classical and Quantum Worlds
经典世界与量子世界之间的新物理学
  • 批准号:
    EP/I004831/1
  • 财政年份:
    2010
  • 资助金额:
    $ 54万
  • 项目类别:
    Fellowship
Collective Phenomena at the Interface Between the Quantum and Classical Worlds
量子世界与经典世界交界处的集体现象
  • 批准号:
    EP/D036194/1
  • 财政年份:
    2006
  • 资助金额:
    $ 54万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了