Quantum Interface between Gamma-Photons - Nuclear Ensembles
伽马光子之间的量子界面 - 核系综
基本信息
- 批准号:1506467
- 负责人:
- 金额:$ 26.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The elementary particles or "quanta" of light have a wavelength of about 500 nanometers (less than 20 millionths of an inch). The study of the interaction of these photons with the electrons inside atoms led to development of devices such as lasers, atomic clocks, supersensitive miniature magnetometers, etc. The goal of the present project is to extend these studies to photons of much shorter wavelengths: 10,000 to 100,000 times shorter. These photons, invisible to the naked eye, begin to enter the regime where they are known as "gamma-photons" or "gamma-rays." Rather than interacting with the electrons inside atoms, these high energy photons interact with the nucleus of the atom. Some of the reasons gamma-photons might be better than conventional (optical) photons for applications is that they can be detected more easily, they can be focused to much smaller spots (ultimately limited by the wavelength of the photon), and they can in principle help process information more quickly because of their higher frequencies. A problem is that they are currently very difficult and expensive to produce and hard to control precisely because conventional optical lenses and mirrors do not work at such short wavelengths. This work seeks to advance the development of compact ("table-top") sources of highly controlled gamma-photons, both through experiments and theoretical work. In effect, this work seeks to extend the field of "quantum optics" to wavelengths approaching the gamma-ray regime. If successful, the work may find applications in the areas of quantum information science, spectroscopy, microscopy, metrology, and sensors. The proposed joint theoretical and experimental research program will provide training for graduate and undergraduate students in the emerging field of the experimental and theoretical quantum gamma-optics as well as in the related (and more general) experimental techniques, analytical methods, and numerical modeling.The project is focused on the experimental and theoretical development of methods to coherently control the interaction of gamma-photons with nuclear ensembles via the variation of the resonant frequency of the nuclear transition in the laboratory reference frame. This variation is achieved via the Doppler shift associated with precisely vibrating the solid through which the photon passes. This is used in conjunction with a source of heralded single photons provided by the essentially simultaneous emission of two photons at 122 keV and 14.4 keV via the natural radioactive decay of Cobalt-57. The advantages of nuclear transitions over electronic transitions is that they have narrow, lifetime-broadened spectral linewidths in bulk solids at room temperature (due to the large mass and small size of nucleons, shielding from the environment, and recoilless absorption due to the Mossbauer effect). This results in orders-of-magnitude stronger interaction of the photons with the nuclear ensemble. Progress has been limited, however, by the absence of bright coherent sources and high finesse resonators in the desired short wavelength range. The present work is based on the lead scientist's recent realization of a table-top source of ultra-short photon sources in the 14.4 keV range with coherent properties, as well as the demonstration of efficient control of single gamma-photon waveforms (F. Vagizov et al., Nature, vol. 508| 3 April 2014, p. 80). The technical and fundamental limitations of the technique as presently developed will be explored and new techniques for the production of short intense pulses and single gamma-photon shaping will be developed. Applications for the controlled single-photon waveforms will be explored in the areas of quantum information science.
光的基本粒子或“量子”的波长约为500纳米(小于百万分之二十英寸)。 对这些光子与原子内部电子相互作用的研究导致了激光器、原子钟、超灵敏微型磁力计等设备的发展。本项目的目标是将这些研究扩展到波长更短的光子:短10,000到100,000倍。这些肉眼看不见的光子开始进入称为“伽马光子”或“伽马射线”的状态。“这些高能光子不是与原子内部的电子相互作用,而是与原子核相互作用。伽马光子可能比传统的(光学)光子更适合应用的一些原因是它们可以更容易地被检测到,它们可以聚焦到更小的点(最终受光子波长的限制),并且由于它们的频率更高,它们原则上可以帮助更快地处理信息。 问题是,它们目前生产起来非常困难和昂贵,并且难以精确控制,因为传统的光学透镜和反射镜不能在如此短的波长下工作。 这项工作旨在通过实验和理论工作推进高度受控的伽马光子的紧凑(“桌面”)源的发展。 实际上,这项工作试图将“量子光学”的领域扩展到接近伽马射线的波长。 如果成功,这项工作可能会在量子信息科学、光谱学、显微镜、计量学和传感器领域得到应用。拟议的联合理论和实验研究计划将为研究生和本科生提供实验和理论量子伽马光学以及相关领域的培训。(和更一般的)实验技术,分析方法,和数值模拟。该项目的重点是实验和理论发展的方法,以相干控制的相互作用,伽玛-在实验室参考系中,通过改变核跃迁的共振频率, 这种变化是通过多普勒频移实现的,多普勒频移与光子穿过的固体的精确振动有关。 这与通过钴-57的天然放射性衰变基本上同时发射122 keV和14.4 keV的两个光子提供的预示单光子源结合使用。 核跃迁相对于电子跃迁的优势在于它们在室温下具有窄的、寿命加宽的光谱线宽(由于核子的大质量和小尺寸,与环境屏蔽,以及穆斯堡尔效应引起的无反冲吸收)。这导致光子与核系综的数量级更强的相互作用。然而,由于在所需的短波长范围内缺乏明亮的相干光源和高精细谐振器,进展受到限制。 目前的工作是基于首席科学家最近实现的具有相干特性的14.4 keV范围内的超短光子源的桌面源,以及对单个伽马光子波形的有效控制的演示(F。Vagizov等人,《自然》,第508卷|2014年4月3日,第80页)。将探讨目前开发的这种技术的技术和基本局限性,并开发产生短强脉冲和单伽玛光子整形的新技术。 可控单光子波形在量子信息科学领域的应用将得到探索。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olga Kocharovskaya其他文献
Olga Kocharovskaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olga Kocharovskaya', 18)}}的其他基金
Quantum Optics with Ultra-Narrow Gamma Resonances
具有超窄伽马共振的量子光学
- 批准号:
2012194 - 财政年份:2020
- 资助金额:
$ 26.62万 - 项目类别:
Standard Grant
Dynamical Control of Resonant Light-Matter Interaction
共振光-物质相互作用的动态控制
- 批准号:
1307346 - 财政年份:2013
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
Control of atoms-light and nuclei-X-ray photons interactions in solids via quantum interference
通过量子干涉控制固体中的原子-光和原子核-X 射线光子相互作用
- 批准号:
0855668 - 财政年份:2009
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
Atomic and Nuclear Interference Phenomena in Solids
固体中的原子和核干涉现象
- 批准号:
0555677 - 财政年份:2006
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
Coherent Control of Nuclear Transition
核转变的连贯控制
- 批准号:
0245081 - 财政年份:2003
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
相似海外基金
A prototype interface between neutral-atom quantum processors and superconducting circuits
中性原子量子处理器和超导电路之间的原型接口
- 批准号:
EP/Y022688/1 - 财政年份:2024
- 资助金额:
$ 26.62万 - 项目类别:
Research Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
- 批准号:
EP/W035839/2 - 财政年份:2024
- 资助金额:
$ 26.62万 - 项目类别:
Research Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
- 批准号:
EP/W035839/1 - 财政年份:2023
- 资助金额:
$ 26.62万 - 项目类别:
Research Grant
On the interface between Quantum and Algorithmic Information Theory
论量子与算法信息论的接口
- 批准号:
567715-2022 - 财政年份:2022
- 资助金额:
$ 26.62万 - 项目类别:
Postgraduate Scholarships - Doctoral
Machine Learning as the Interface Between Quantum and Classical Computation
机器学习作为量子和经典计算之间的接口
- 批准号:
2127827 - 财政年份:2018
- 资助金额:
$ 26.62万 - 项目类别:
Studentship
Exploring new quantum phases in the interface between topological insulator and ferromagnet
探索拓扑绝缘体和铁磁体之间界面的新量子相
- 批准号:
25871133 - 财政年份:2013
- 资助金额:
$ 26.62万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Quantum Interface Between Atomic and Superconducting Qubits
原子和超导量子位之间的量子接口
- 批准号:
1212448 - 财政年份:2012
- 资助金额:
$ 26.62万 - 项目类别:
Continuing Grant
New Physics at the Interface Between the Classical and Quantum Worlds
经典世界与量子世界之间的新物理学
- 批准号:
EP/I004831/2 - 财政年份:2011
- 资助金额:
$ 26.62万 - 项目类别:
Fellowship
New Physics at the Interface Between the Classical and Quantum Worlds
经典世界与量子世界之间的新物理学
- 批准号:
EP/I004831/1 - 财政年份:2010
- 资助金额:
$ 26.62万 - 项目类别:
Fellowship
Collective Phenomena at the Interface Between the Quantum and Classical Worlds
量子世界与经典世界交界处的集体现象
- 批准号:
EP/D036194/1 - 财政年份:2006
- 资助金额:
$ 26.62万 - 项目类别:
Research Grant