Efficient Numerical Solution Methods for Dislocation based Plasticity
基于位错的塑性的高效数值求解方法
基本信息
- 批准号:206435149
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:2011
- 资助国家:德国
- 起止时间:2010-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We will develop efficient approximations and parallel solution methods for single-crystal small strain elasto-plasticity in 3D, where the plastic strain is determined by the averaged continuum dislocation density (CDD) system developed in the research group. Within each slip system, a Runge-Kutta discontinuous Galerkin method for the CDD model will be realized, which describes the evolution of the dislocation density, the GND density vector, and the curvature density. The deformation, depending on the plastic shear strain determined by Orowan's relation, is then approximated with finite elements. We aim for a robust and stable algorithm for the coupling of the full system which combines the two models, and which allows for large-scale simulations with a full set of slip systems.The numerical implementation of the CDD model will be based on the numerical methods developed in the first funding period, where the hdCDD model in the extended configuration space is considered; the results of the full and the reduced models will be compared for a 2D reduction with one or two active slip systems.The material law for the dislocation velocity, the interaction of the dislocation densities between different slip systems, and appropriate boundary conditions for the dislocations will be derived then evaluated numerically in close cooperation with the project partners in the research group.
我们将开发有效的近似和并行解决方案的单晶小应变弹塑性在3D中,其中塑性应变是由平均连续位错密度(CDD)的研究小组开发的系统。在每个滑移系内,CDD模型的龙格-库塔间断伽辽金方法将被实现,该方法描述了位错密度、GND密度矢量和曲率密度的演化。变形,取决于塑性剪切应变确定的Orowan的关系,然后近似与有限元。我们的目标是一个强大的和稳定的算法的耦合的整个系统,结合这两个模型,并允许大规模的模拟与全套slip system.The数值实施的CDD模型将基于数值方法开发的第一个资金期,其中hdCDD模型在扩展的配置空间被认为是;将比较完整模型和简化模型的结果,并对一个或两个活动滑移系的二维简化模型进行比较。位错速度的材料定律,不同滑移系之间位错密度的相互作用,并与研究小组的项目伙伴密切合作,推导出合适的位错边界条件,然后进行数值评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christian Wieners其他文献
Professor Dr. Christian Wieners的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Christian Wieners', 18)}}的其他基金
Effiziente parallele Lösungsverfahren für 3D-Finite-Elemente-Simulationen in der Finiten Plastizität
有限塑性 3D 有限元模拟的高效并行求解方法
- 批准号:
5408789 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Research on coupling solution of soft-rigid multibody dynamics and numerical fluid dynamics
软刚多体动力学与数值流体动力学耦合求解研究
- 批准号:
22K04572 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:
569181-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Numerical Solution of Next Generation Inverse Problems for Geophysical Applications
地球物理应用的下一代反问题的数值求解
- 批准号:
RGPIN-2021-03285 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Numerical Solution of Next Generation Inverse Problems for Geophysical Applications
地球物理应用的下一代反问题的数值求解
- 批准号:
RGPIN-2021-03285 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Numerical Solution of Large-Scale Sparse Linear Systems Arising from Problems with Constraints
由约束问题引起的大规模稀疏线性系统的数值求解
- 批准号:
RGPIN-2017-04491 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Numerical Solution of Next Generation Inverse Problems for Geophysical Applications
地球物理应用的下一代反问题的数值求解
- 批准号:
DGECR-2021-00162 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Efficient Numerical Solution for Constrained Tensor Ring Decomposition: A Theoretical Convergence Analysis and Applications
约束张量环分解的高效数值解:理论收敛性分析及应用
- 批准号:
20K19749 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Numerical Software for the Adaptive Error Controlled Solution of Ordinary and Partial Differential Equations
常微分方程自适应误差控制解的数值软件
- 批准号:
RGPIN-2017-05811 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual