Collaborative Research: Using Multi-Modal Digital Footprints to Infer Public Sentiment

合作研究:使用多模式数字足迹来推断公众情绪

基本信息

  • 批准号:
    1216345
  • 负责人:
  • 金额:
    $ 30.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-11-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

Social science takes as axiomatic that agents act on beliefs: however, teasing out the correlations between belief and action is no simple feat. Traditionally, social scientists relied on survey data to measure sentiment that might indicate changing economic trends, and on lab experiments to test actions given manipulated beliefs. Surveys, however, are notoriously expensive to scale, difficult to conduct frequently, and possess bias; lab experiments artificially constrain decision-making and thus fail to capture the complex dependencies of real-world actions. This project will generate measurements of public sentiment directly from the actions of people, using one of the largest datasets of human behavior ever studied: online opinions expressed on platforms like Twitter or comments posted on news websites, time series representing the volume of search queries on Google, and call detail records. Using these digital footprints, the project will develop new social-computational measures of public sentiments related to the state of the economy, expected unemployment, and concerns about national priorities. Broader impacts: The project will offer new alternatives to surveys as a measure of public sentiment, and will also generate unprecedented insight into the online and onsite behavior of the American population. This research also has the potential to help public and private organizations better understand the dynamic behaviors of customers and constituents, and to make business and policy decisions informed by economic trends derived from data. The project will enhance education through the interdisciplinary training of graduate students. Both graduate and undergraduate students from underrepresented groups will be actively encouraged to participate in the project. A public website will also be set up detailing the project results.
社会科学认为,行为主体根据信念行事是不言自明的,然而,梳理出信念和行为之间的相关性并非易事。传统上,社会科学家依靠调查数据来衡量可能表明经济趋势变化的情绪,并通过实验室实验来测试给定操纵信念的行为。然而,调查的规模是出了名的昂贵,很难经常进行,并且存在偏见;实验室实验人为地限制了决策,因此无法捕捉到现实世界行动的复杂依赖关系。该项目将使用有史以来最大的人类行为数据集之一,直接从人们的行为中产生公众情绪的测量结果:在Twitter等平台上表达的在线观点或在新闻网站上发布的评论,代表谷歌搜索查询量的时间序列,以及通话细节记录。利用这些数字足迹,该项目将开发新的社会计算方法,以衡量与经济状况、预期失业率和对国家优先事项的关注相关的公众情绪。更广泛的影响:该项目将为衡量公众情绪的调查提供新的选择,并将对美国人口的在线和现场行为产生前所未有的深入了解。这项研究也有可能帮助公共和私人组织更好地了解客户和选民的动态行为,并根据数据得出的经济趋势做出商业和政策决策。该项目将通过研究生的跨学科培训来提高教育水平。将积极鼓励来自代表性不足群体的研究生和本科生参与该项目。此外,还将设立一个公开网站,详细介绍项目成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathan Eagle其他文献

Social Network Computing
社交网络计算
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nathan Eagle;A. Pentland
  • 通讯作者:
    A. Pentland

Nathan Eagle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathan Eagle', 18)}}的其他基金

Collaborative Research: Using Multi-Modal Digital Footprints to Infer Public Sentiment
合作研究:使用多模式数字足迹来推断公众情绪
  • 批准号:
    1111264
  • 财政年份:
    2011
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
SBIR Phase IB: Large-Scale Social Network Analysis Software Services for the Telecommunications Industry
SBIR IB 阶段:电信行业大规模社交网络分析软件服务
  • 批准号:
    1003676
  • 财政年份:
    2010
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
SBIR Phase I: Large-Scale Social Network Analysis Software Services for the Telecommunications Industry
SBIR 第一阶段:电信行业大规模社交网络分析软件服务
  • 批准号:
    0912640
  • 财政年份:
    2009
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344722
  • 财政年份:
    2024
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334798
  • 财政年份:
    2024
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323649
  • 财政年份:
    2024
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342747
  • 财政年份:
    2024
  • 资助金额:
    $ 30.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了