Collaborative Research: Determining the Physical Mechanisms of Atomic Stick -Slip Friction by Closing the Gap between Experiments and Atomistic Simulations

合作研究:通过缩小实验和原子模拟之间的差距来确定原子粘滑摩擦的物理机制

基本信息

  • 批准号:
    1216441
  • 负责人:
  • 金额:
    $ 21.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-01-01 至 2015-04-30
  • 项目状态:
    已结题

项目摘要

The objective of this collaborative research project is to understand the atomic-level mechanisms of friction that control the sliding of nanoscale contacts, with a particular focus on the prevalent phenomenon known as "atomic stick-slip friction". Molecular dynamics (MD) simulations and atomic force microscopy (AFM) experiments that match tribological conditions as closely as possible will allow results from both to be directly compared. The ability to compare AFM experiments with dynamic atomistic simulations, including molecular dynamics (MD), is limited at present. One is unable see the positions and velocities of the atoms in AFM experiments, which motivates MD studies. However, MD results cannot be directly compared with those from AFM because conventional simulations must be run at speeds several orders of magnitude faster rates than AFM experiments. As well, many MD and AFM studies differ in other important conditions such as materials, load, and tip size. In this work, speeds will be matched through the concurrent use of new methods being developed collaboratively by the principal investigators specifically for atomic-scale friction studies. The use of noble metals will ensure that the interface is well-defined and reliably modeled. Other critical parameters, including stiffness, tip size and shape, environment, and crystal surface and sliding direction orientation, are also matched. If successful, this will enable the atomic structure, mechanics, and dynamics of the contact to be directly linked with the corresponding friction forces and energy dissipation. Specifically, by closing the gaps between simulation and experiment, the detailed results and mechanisms resolvable only in atomistic simulations can be validated by experiments, phenomena observed experimentally can be explained by reference to the simulations, and both can form the basis for reliable predictive models describing nanoscale frictional sliding. This will provide a deep and reliable understanding of single asperity friction, which is an important step toward fully understanding the behavior of collections of asperities that one encounters in larger-scale contacts ? a longstanding goal for nanotribology research. From the technological perspective, the work can contribute to the knowledge base needed for the rational design of nanomechanical devices that involve contacting, sliding surfaces. From an educational perspective, there will be significant impact through collaborative efforts between the two principal investigators. This includes development of a multi-purpose demonstration module based on AFM, involvement of undergraduates and high school students, organizing and delivering a short course on nanotribology to graduate students, and active participation in international collaborative cyber-network communities.
该合作研究项目的目标是了解控制纳米级接触滑动的原子级摩擦机制,特别关注被称为“原子粘滑摩擦”的普遍现象。分子动力学(MD)模拟和原子力显微镜(AFM)实验尽可能地匹配摩擦学条件,将使两者的结果直接进行比较。比较AFM实验与动态原子模拟的能力,包括分子动力学(MD),目前是有限的。在原子力显微镜实验中,人们无法看到原子的位置和速度,这激发了原子力显微镜的研究。然而,原子力显微镜的结果不能直接与原子力显微镜的结果进行比较,因为传统的模拟必须以比原子力显微镜实验快几个数量级的速度运行。同样,许多MD和AFM研究在其他重要条件如材料、载荷和尖端尺寸上也存在差异。在这项工作中,速度将通过同时使用由主要研究人员专门为原子尺度摩擦研究合作开发的新方法来匹配。贵金属的使用将确保接口被良好定义并可靠地建模。其他关键参数,包括刚度,尖端尺寸和形状,环境,晶体表面和滑动方向取向,也进行了匹配。如果成功,这将使原子结构、力学和接触动力学与相应的摩擦力和能量耗散直接联系起来。具体而言,通过缩小模拟和实验之间的差距,只能在原子模拟中解决的详细结果和机制可以通过实验得到验证,实验观察到的现象可以通过模拟来解释,两者都可以形成可靠的预测模型描述纳米尺度摩擦滑动的基础。这将提供对单个磨粒摩擦的深入而可靠的理解,这是全面理解在更大规模接触中遇到的磨粒集合行为的重要一步。纳米摩擦学研究的长期目标。从技术的角度来看,这项工作可以为涉及接触、滑动表面的纳米机械器件的合理设计提供所需的知识基础。从教育的角度来看,两位主要研究人员的合作将产生重大影响。这包括基于AFM的多用途演示模块的开发,本科生和高中生的参与,为研究生组织和提供纳米摩擦学短期课程,以及积极参与国际协作网络社区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashlie Martini其他文献

Mechanical behavior and size–dependent strength of small noble-metal nanoparticles
贵金属纳米小颗粒的力学行为及尺寸相关强度
  • DOI:
    10.1016/j.actamat.2025.121092
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Ruikang Ding;Ashlie Martini;Tevis D.B. Jacobs
  • 通讯作者:
    Tevis D.B. Jacobs
Correction to: Activation Volume in Shear-Driven Chemical Reactions
  • DOI:
    10.1007/s11249-022-01674-4
  • 发表时间:
    2022-12-16
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Ashlie Martini;Seong H. Kim
  • 通讯作者:
    Seong H. Kim
Effect of polymer structure and chemistry on viscosity index, thickening efficiency, and traction coefficient of lubricants
  • DOI:
    10.1016/j.molliq.2022.119215
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pawan Panwar;Emily Schweissinger;Stefan Maier;Stefan Hilf;Sofia Sirak;Ashlie Martini
  • 通讯作者:
    Ashlie Martini
Effect of Molecular-Scale Features on the Polymer Coil Size of Model Viscosity Index Improvers
  • DOI:
    10.1007/s11249-016-0672-0
  • 发表时间:
    2016-03-31
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Uma Shantini Ramasamy;Seth Lichter;Ashlie Martini
  • 通讯作者:
    Ashlie Martini
Macroscale superlubricity enabled by rationally designed MoS2-based superlattice films
  • DOI:
    10.1016/j.xcrp.2023.101390
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Siming Ren;Mingjun Cui;Ashlie Martini;Yanbin Shi;Haixin Wang;Jibin Pu;Qunyang Li;Qunji Xue;Liping Wang
  • 通讯作者:
    Liping Wang

Ashlie Martini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashlie Martini', 18)}}的其他基金

Collaborative Research: Mechanistic Understanding of Chemical Activation in Shear-Driven Manufacturing Processes
合作研究:剪切驱动制造过程中化学活化的机理理解
  • 批准号:
    2038499
  • 财政年份:
    2021
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Interfacial Mechanisms to Design and Manufacture High-Performance Biodegradable Ionic Liquid Lubricants
GOALI/合作研究:了解界面机制以设计和制造高性能可生物降解离子液体润滑剂
  • 批准号:
    2010584
  • 财政年份:
    2020
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
2018 Tribology: Progress in Tribology at the Interface Between Disciplines; Gordon Research Conference; Bates College, Lewiston, Maine; June 24-29, 2018
2018年摩擦学:摩擦学学科交叉领域的进展;
  • 批准号:
    1811957
  • 财政年份:
    2018
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Friction in Flatland - Contact, Adhesion, and Friction of 2D Materials
合作研究:平地摩擦 - 二维材料的接触、粘附和摩擦
  • 批准号:
    1762384
  • 财政年份:
    2018
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Friction on 2D Materials -- Understanding the Critical Role of Edge Chemistry
合作研究:二维材料上的摩擦——了解边缘化学的关键作用
  • 批准号:
    1727356
  • 财政年份:
    2017
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Pushing Molecules Around: Identifying and Understanding the Elementary Steps in Tribochemical Reactions
合作研究:推动分子:识别和理解摩擦化学反应的基本步骤
  • 批准号:
    1634354
  • 财政年份:
    2016
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Formation and Separation of Nanoscale Contacts
合作研究:了解纳米级接触的形成和分离
  • 批准号:
    1537613
  • 财政年份:
    2015
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Initiation: Facilitating Design Thinking through Cases
合作研究:研究启动:通过案例促进设计思维
  • 批准号:
    1544134
  • 财政年份:
    2015
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Temperature Dependence of Atomic Scale Friction
合作研究:原子尺度摩擦的温度依赖性
  • 批准号:
    1362565
  • 财政年份:
    2014
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantitative Prediction of Sliding Friction Using Integrated Theory and Experiments
合作研究:利用理论与实验相结合的滑动摩擦定量预测
  • 批准号:
    1265594
  • 财政年份:
    2013
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319123
  • 财政年份:
    2024
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
  • 批准号:
    2322205
  • 财政年份:
    2024
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319124
  • 财政年份:
    2024
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
  • 批准号:
    2319125
  • 财政年份:
    2024
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
  • 批准号:
    2322206
  • 财政年份:
    2024
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Determining the Impacts of a Combined Historical Watershed and Regional Drought on Coastal Louisiana Wetland Ecohydrology
合作研究:RAPID:确定历史流域和区域干旱对路易斯安那州沿海湿地生态水文学的综合影响
  • 批准号:
    2408853
  • 财政年份:
    2023
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining climate related changes in water mass structure, paleoventilation, and paleocirculation in the Southeast Indian and Southern Oceans
合作研究:确定东南印度洋和南大洋与气候相关的水团结构、古通风和古环流变化
  • 批准号:
    2231146
  • 财政年份:
    2023
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Determining the Impacts of a Combined Historical Watershed and Regional Drought on Coastal Louisiana Wetland Ecohydrology
合作研究:RAPID:确定历史流域和区域干旱对路易斯安那州沿海湿地生态水文学的综合影响
  • 批准号:
    2408854
  • 财政年份:
    2023
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining climate related changes in water mass structure, paleoventilation, and paleocirculation in the Southeast Indian and Southern Oceans
合作研究:确定东南印度洋和南大洋与气候相关的水团结构、古通风和古环流变化
  • 批准号:
    2230999
  • 财政年份:
    2023
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the Role of Ocean Dynamics in Atlantic Sea Surface Temperature Variations Using a Hierarchy of Coupled Models
合作研究:使用耦合模型层次结构确定海洋动力学在大西洋表面温度变化中的作用
  • 批准号:
    2219934
  • 财政年份:
    2022
  • 资助金额:
    $ 21.52万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了