Collaborative Research: Temperature Dependence of Atomic Scale Friction

合作研究:原子尺度摩擦的温度依赖性

基本信息

  • 批准号:
    1362565
  • 负责人:
  • 金额:
    $ 24.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

Reducing friction in engineered systems can substantially reduce worldwide energy consumption and detrimental environmental emissions. Improvements in lubricants, engineered surfaces, and mechanical design have led to significant progress, but a new set of challenges emerges when considering friction at very high or very low temperatures. High temperature friction is relevant to many applications that either operate in elevated temperature environments or are designed to manage temperature rise. The temperature dependence of friction is also important in aerospace systems such as satellites, which possess thousands of moving, contacting parts exposed to temperatures ranging from a few hundred degrees Celsius down to near absolute zero, but cannot be serviced once deployed in space and so must not fail. Understanding, predicting, and controlling friction as a function of temperature is therefore critical. The proposed research is focused on mechanisms that determine the temperature dependence of friction for nanoscale single asperities. This work can ultimately contribute to a deeper understanding and more precise and predictive approach to designing reliable, energy-efficient systems. The project will also have impact from an outreach perspective through activities including development of friction-based learning modules disseminated through participation in programs focused on women in engineering, and involvement of undergraduates and high school teachers in the research.The intellectual merit of this research lies in advancing the fundamental understanding of the temperature dependence of friction for single asperities. Atomistic simulations and atomic force microscopy experiments will be conducted, where state-of-the-art methods are used so that the conditions in the simulations and experiments are optimally matched, allowing results to be directly compared and validated, maximizing the understanding gained. This tightly-coupled approach will enable the atomic structure, mechanics, dynamics, and thermal behavior of the contact to be deterministically linked with friction forces and the corresponding energy dissipation. Key features of the proposed unique collaborative approach are: integration of advanced variable-temperature atomic force microscope measurements and atomistic simulations of optimally-matched systems; use of novel thermal probes that enable rapid variation the temperature of the contact; and modeling and simulation at the same sliding speeds through the use of accelerated simulations and ultrafast atomic force microscope scanning. Studies will be performed in three different environments to isolate distinct temperature-dependent contributions: ultra-high vacuum environment, in the presence of water vapor, and in the presence of hydrocarbon vapors. With this comprehensive approach, the underlying mechanisms governing the temperature dependence of interfacial friction can be definitively established.
减少工程系统中的摩擦可以大大减少全球能源消耗和有害的环境排放。润滑剂、工程表面和机械设计的改进带来了重大进展,但在考虑极高或极低温度下的摩擦时,出现了一系列新的挑战。高温摩擦与许多在高温环境中操作或设计用于管理温度升高的应用相关。摩擦的温度依赖性在诸如卫星的航空航天系统中也很重要,卫星具有数千个暴露于从几百摄氏度到接近绝对零度的温度范围内的移动接触部件,但是一旦部署在太空中就不能维修,因此必须不能发生故障。因此,理解、预测和控制摩擦力随温度的变化至关重要。拟议的研究集中在机制,确定纳米级单一微凸体的摩擦温度依赖性。这项工作最终可以有助于更深入的理解以及更精确和预测的方法来设计可靠、节能的系统。该项目还将通过各种活动产生影响,包括通过参与以女性工程师为重点的项目,以及大学生和高中教师参与研究,开发基于摩擦的学习模块。这项研究的智力价值在于推进对单一粗糙体摩擦温度依赖性的基本理解。将进行原子模拟和原子力显微镜实验,其中使用最先进的方法,以便模拟和实验中的条件得到最佳匹配,从而可以直接比较和验证结果,最大限度地提高所获得的理解。这种紧密耦合的方法将使接触的原子结构、力学、动力学和热行为与摩擦力和相应的能量耗散确定性地联系起来。所提出的独特的协作方法的主要特点是:集成先进的变温原子力显微镜测量和最佳匹配系统的原子模拟;使用新型热探针,使接触的温度快速变化;通过使用加速模拟和超快原子力显微镜扫描,在相同的滑动速度下进行建模和模拟。研究将在三种不同的环境中进行,以隔离不同的温度依赖性的贡献:超高真空环境,在水蒸气的存在下,在碳氢化合物蒸气的存在下。通过这种全面的方法,可以明确地建立界面摩擦的温度依赖性的基本机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashlie Martini其他文献

Mechanical behavior and size–dependent strength of small noble-metal nanoparticles
贵金属纳米小颗粒的力学行为及尺寸相关强度
  • DOI:
    10.1016/j.actamat.2025.121092
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Ruikang Ding;Ashlie Martini;Tevis D.B. Jacobs
  • 通讯作者:
    Tevis D.B. Jacobs
Correction to: Activation Volume in Shear-Driven Chemical Reactions
  • DOI:
    10.1007/s11249-022-01674-4
  • 发表时间:
    2022-12-16
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Ashlie Martini;Seong H. Kim
  • 通讯作者:
    Seong H. Kim
Effect of polymer structure and chemistry on viscosity index, thickening efficiency, and traction coefficient of lubricants
  • DOI:
    10.1016/j.molliq.2022.119215
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pawan Panwar;Emily Schweissinger;Stefan Maier;Stefan Hilf;Sofia Sirak;Ashlie Martini
  • 通讯作者:
    Ashlie Martini
Effect of Molecular-Scale Features on the Polymer Coil Size of Model Viscosity Index Improvers
  • DOI:
    10.1007/s11249-016-0672-0
  • 发表时间:
    2016-03-31
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Uma Shantini Ramasamy;Seth Lichter;Ashlie Martini
  • 通讯作者:
    Ashlie Martini
Macroscale superlubricity enabled by rationally designed MoS2-based superlattice films
  • DOI:
    10.1016/j.xcrp.2023.101390
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.9
  • 作者:
    Siming Ren;Mingjun Cui;Ashlie Martini;Yanbin Shi;Haixin Wang;Jibin Pu;Qunyang Li;Qunji Xue;Liping Wang
  • 通讯作者:
    Liping Wang

Ashlie Martini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashlie Martini', 18)}}的其他基金

Collaborative Research: Mechanistic Understanding of Chemical Activation in Shear-Driven Manufacturing Processes
合作研究:剪切驱动制造过程中化学活化的机理理解
  • 批准号:
    2038499
  • 财政年份:
    2021
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Understanding Interfacial Mechanisms to Design and Manufacture High-Performance Biodegradable Ionic Liquid Lubricants
GOALI/合作研究:了解界面机制以设计和制造高性能可生物降解离子液体润滑剂
  • 批准号:
    2010584
  • 财政年份:
    2020
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
2018 Tribology: Progress in Tribology at the Interface Between Disciplines; Gordon Research Conference; Bates College, Lewiston, Maine; June 24-29, 2018
2018年摩擦学:摩擦学学科交叉领域的进展;
  • 批准号:
    1811957
  • 财政年份:
    2018
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Friction in Flatland - Contact, Adhesion, and Friction of 2D Materials
合作研究:平地摩擦 - 二维材料的接触、粘附和摩擦
  • 批准号:
    1762384
  • 财政年份:
    2018
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Friction on 2D Materials -- Understanding the Critical Role of Edge Chemistry
合作研究:二维材料上的摩擦——了解边缘化学的关键作用
  • 批准号:
    1727356
  • 财政年份:
    2017
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Pushing Molecules Around: Identifying and Understanding the Elementary Steps in Tribochemical Reactions
合作研究:推动分子:识别和理解摩擦化学反应的基本步骤
  • 批准号:
    1634354
  • 财政年份:
    2016
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Formation and Separation of Nanoscale Contacts
合作研究:了解纳米级接触的形成和分离
  • 批准号:
    1537613
  • 财政年份:
    2015
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Initiation: Facilitating Design Thinking through Cases
合作研究:研究启动:通过案例促进设计思维
  • 批准号:
    1544134
  • 财政年份:
    2015
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Quantitative Prediction of Sliding Friction Using Integrated Theory and Experiments
合作研究:利用理论与实验相结合的滑动摩擦定量预测
  • 批准号:
    1265594
  • 财政年份:
    2013
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the Physical Mechanisms of Atomic Stick -Slip Friction by Closing the Gap between Experiments and Atomistic Simulations
合作研究:通过缩小实验和原子模拟之间的差距来确定原子粘滑摩擦的物理机制
  • 批准号:
    1216441
  • 财政年份:
    2012
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341994
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Humidity and Temperature Effects on Phase Separation and Particle Morphology in Internally Mixed Organic-Inorganic Aerosol
合作研究:湿度和温度对内部混合有机-无机气溶胶中相分离和颗粒形态的影响
  • 批准号:
    2412046
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
  • 批准号:
    2335083
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
  • 批准号:
    2335082
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341995
  • 财政年份:
    2024
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313860
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Room-temperature Superfluorescence in Multi-fluorophore Protein Cages and Its Origins
合作研究:多荧光团蛋白笼中的室温超荧光及其起源
  • 批准号:
    2232718
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Influence of Agricultural Tile Drainage on Streamflow and Water Temperature in the Midwestern US using a Stakeholder-driven Approach
合作研究:采用利益相关者驱动的方法探索美国中西部农业瓷砖排水对水流和水温的影响
  • 批准号:
    2227356
  • 财政年份:
    2023
  • 资助金额:
    $ 24.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了