RUI: Uncertainty reduction through better nonlinear particle filters
RUI:通过更好的非线性粒子滤波器降低不确定性
基本信息
- 批准号:1217073
- 负责人:
- 金额:$ 13.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this project is to create and implement new methods for improving the performance of filtering, or data assimilation techniques, applied to non-linear, non-Gaussian systems. Many problems in computational statistics, artificial intelligence, and geophysics involve such systems, and utilize specialized Monte Carlo sampling methods, called particle filters, for data analysis and forecasting, and for better understanding of the underlying phenomena. The principal investigator studies variational data assimilation methods to demonstrate that targeted ensemble generation using those methods delivers more effective filter performance, and that dynamic adaptation of the size of the particle ensemble improves the computational efficiency of the filter.Statistical computations are an essential tool for the solution of problems in such diverse areas as artificial intelligence, industrial and consumer electronics, robotics, weather systems, climate change, ocean ecosystems, and land surface processes. The proposed research improves statistical computations required for the analysis, estimation, and forecasting of information that arrives over time, and contributes to a better combination of theoretical models with observational data. In addition, the project involves the training of undergraduate students in applied scientific research.
这个项目的目标是创建和实现新的方法来提高滤波的性能,或数据同化技术,应用于非线性,非高斯系统。计算统计学、人工智能和地球物理学中的许多问题都涉及到这样的系统,并利用专门的蒙特卡罗采样方法(称为粒子滤波器)进行数据分析和预测,以及更好地理解潜在现象。首席研究员研究了变分数据同化方法,以证明使用这些方法生成目标系综可以提供更有效的滤波性能,并且动态适应粒子系综的大小可以提高滤波器的计算效率。统计计算是解决人工智能、工业和消费电子、机器人、天气系统、气候变化、海洋生态系统和陆地表面过程等不同领域问题的重要工具。拟议的研究改进了分析、估计和预测随时间推移而来的信息所需的统计计算,并有助于更好地将理论模型与观测数据结合起来。此外,本项目还涉及本科生应用科学研究能力的培养。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haiyan Cheng其他文献
Synthesis and Structures of Two Dinuclear Transition Metal Complexes and Their Catalytic Applications in Hydrogenation of Ketones
两种双核过渡金属配合物的合成、结构及其在酮加氢中的催化应用
- DOI:
10.1002/zaac.201300153 - 发表时间:
2013-08 - 期刊:
- 影响因子:1.4
- 作者:
Mulan Zeng;Haiyan Cheng;Zilu Chen;Fupei Liang - 通讯作者:
Fupei Liang
基于图像的燃烧火焰温度场重建
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xuguang Wang;Zhiheng Wang;Haiyan Cheng - 通讯作者:
Haiyan Cheng
Integrative omics analyses of tea (emCamellia sinensis/em) under glufosinate stress reveal defense mechanisms: A trade-off with flavor loss
草铵膦胁迫下茶树(山茶属)整合组学分析揭示防御机制:与风味损失的权衡
- DOI:
10.1016/j.jhazmat.2024.134542 - 发表时间:
2024-07-15 - 期刊:
- 影响因子:11.300
- 作者:
Huan Yu;Dong Li;Yangliu Wu;Peijuan Miao;Chunran Zhou;Haiyan Cheng;Qinyong Dong;Yingjie Zhao;Zhusheng Liu;Li Zhou;Canping Pan - 通讯作者:
Canping Pan
Case report: Successful use of MEK inhibitors as an adjuvant approach in the treatment of pediatric MAP4-RAF1 fusion-positive solid tumor
- DOI:
10.1038/s41698-025-00996-5 - 发表时间:
2025-06-21 - 期刊:
- 影响因子:8.000
- 作者:
Shen Yang;Shixuan Zhang;Jiarong Wang;Nan Zhang;Jinhu Wang;Mawei Jiang;Deguang Meng;Jinrong Xie;Xiaofeng Chang;Haiyan Cheng;Huanmin Wang - 通讯作者:
Huanmin Wang
Recognition of urban pollution types based on BP neural network
基于BP神经网络的城市污染类型识别
- DOI:
10.1117/12.2659277 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
R. Fei;Guangzhi Di;Haiyan Cheng - 通讯作者:
Haiyan Cheng
Haiyan Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Towards Maximum Feasible Reduction in Aerosol Forcing Uncertainty (Aerosol-MFR)
最大限度地降低气溶胶强迫不确定性(气溶胶-MFR)
- 批准号:
NE/X013901/1 - 财政年份:2023
- 资助金额:
$ 13.22万 - 项目类别:
Research Grant
Computational and machine learning methods for model reduction, uncertainty propagation, and parameter identification in fluid and solid mechanics
流体和固体力学中模型简化、不确定性传播和参数识别的计算和机器学习方法
- 批准号:
RGPIN-2021-02693 - 财政年份:2022
- 资助金额:
$ 13.22万 - 项目类别:
Discovery Grants Program - Individual
Computational and machine learning methods for model reduction, uncertainty propagation, and parameter identification in fluid and solid mechanics
流体和固体力学中模型简化、不确定性传播和参数识别的计算和机器学习方法
- 批准号:
RGPIN-2021-02693 - 财政年份:2021
- 资助金额:
$ 13.22万 - 项目类别:
Discovery Grants Program - Individual
Global Sensitivity Analysis enabled Uncertainty Domain Reduction for Euglycemic Control of Type 1 Diabetics
全局敏感性分析可降低 1 型糖尿病患者血糖正常控制的不确定性域
- 批准号:
2021710 - 财政年份:2020
- 资助金额:
$ 13.22万 - 项目类别:
Standard Grant
Study on uncertainty reduction of standard dosimetry for radiation therapy photon beam
放射治疗光子束标准剂量测定不确定度降低研究
- 批准号:
19K17217 - 财政年份:2019
- 资助金额:
$ 13.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Enabling Bayesian uncertainty quantification for multiscale systems and network models via mutual likelihood-informed dimension reduction (A06+)
通过相互似然信息降维实现多尺度系统和网络模型的贝叶斯不确定性量化 (A06)
- 批准号:
337475393 - 财政年份:2017
- 资助金额:
$ 13.22万 - 项目类别:
Collaborative Research Centres
Quantification and Reduction of Spatial Scale-Induced Uncertainty
空间尺度引起的不确定性的量化和减少
- 批准号:
1821973 - 财政年份:2017
- 资助金额:
$ 13.22万 - 项目类别:
Standard Grant
The Aerosol-Cloud Uncertainty REduction project (A-CURE)
气溶胶云不确定性降低项目 (A-CURE)
- 批准号:
NE/P013406/1 - 财政年份:2017
- 资助金额:
$ 13.22万 - 项目类别:
Research Grant
Model order reduction in space and parameter dimension - towards damage-based modeling of polymorphic uncertainty in the context of robustness and reliability
空间和参数维度的模型降阶 - 在鲁棒性和可靠性的背景下实现基于损伤的多态不确定性建模
- 批准号:
312911604 - 财政年份:2016
- 资助金额:
$ 13.22万 - 项目类别:
Priority Programmes
Uncertainty reduction in Models For Understanding deveLopment Applications (UMFULA)
降低理解开发应用模型 (UMFULA) 的不确定性
- 批准号:
NE/M020509/2 - 财政年份:2016
- 资助金额:
$ 13.22万 - 项目类别:
Research Grant