Geometry and Physics of String Compactifications

弦紧化的几何和物理

基本信息

  • 批准号:
    1217109
  • 负责人:
  • 金额:
    $ 32.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

Research in string theory in the past three decades has led to exciting new insights in physics and mathematics. Considering string propagation in nontrivial backgrounds produces physical interpretations for mathematical structures in spacetime. The interplay between mathematical and physical intuitions and techniques has enriched both fields. A notable example of this is the discovery and the many applications of mirror symmetry. The research described here will build on these results and on recent progress in both fields to pursue these studies in new regimes. One aim is to improve our understanding of the geometry and physics of heterotic string compactifications using a variety of approaches. These models can describe universes similar to ours with such features as nonabelian gauge symmetry and chiral matter content. In addition an investigation of extremal transitions in M-theory compactifications using insights from geometry and field theory will be carried out to learn about the possible dynamics. This work is expected to lead to a better understanding of the physics of string theory, as well as to insight into the mathematics of CalabiYau spaces. Broader Impact: This work will be done in collaboration with physicists and mathematicians around the world, enhancing interdisciplinary cooperation. Experience shows that such collaborations in this field have been productive , as new physics insights and new results in pure mathematics go hand-in-hand. The PI will also train graduate students and involve undergraduate students in the research. He will also enhance his program of outreach activities. This includes collaborations with local public schools to enhance science teaching and generate enthusiasm for science in young people by visits to the classroom by the PI and/or by students trained by the PI to present specific curriculum materials developed in concert with the schools. These curriculum materials are made broadly available for use elsewhere. The regular public stargazing events conducted by the PI for the past decade will be enhanced by including astrophotography capabilities.
在过去的30年里,弦理论的研究在物理学和数学领域带来了令人兴奋的新见解。考虑弦在非平凡背景中的传播,可以对时空中的数学结构做出物理解释。数学和物理的直觉和技术之间的相互作用丰富了这两个领域。这方面的一个显著例子是镜像对称的发现和许多应用。这里描述的研究将建立在这些结果和在这两个领域的最新进展,在新的制度下进行这些研究。一个目的是提高我们的理解的几何和物理的杂合弦紧化使用各种方法。这些模型可以描述类似于我们的宇宙与非阿贝尔规范对称性和手征物质含量等功能。此外,将利用几何和场论的见解对M-理论紧化中的极值转变进行调查,以了解可能的动态。这项工作预计将导致更好地理解弦理论的物理学,以及深入了解卡-丘空间的数学。更广泛的影响:这项工作将与世界各地的物理学家和数学家合作完成,加强跨学科合作。经验表明,在这一领域的这种合作是富有成效的,因为新的物理学见解和纯数学的新成果齐头并进。PI还将培训研究生,并让本科生参与研究。他还将加强他的外联活动计划。这包括与当地公立学校合作,通过PI和/或PI培训的学生访问教室,介绍与学校合作开发的具体课程材料,加强科学教学,激发年轻人对科学的热情。这些教材广泛提供,供其他地方使用。PI在过去十年中定期举办的公众观星活动将通过包括天体摄影能力而得到加强。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

M. Ronen Plesser其他文献

A (0,2) mirror map
A (0,2) 镜像贴图
  • DOI:
    10.1007/jhep02(2011)001
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Ilarion V. Melnikov;M. Ronen Plesser
  • 通讯作者:
    M. Ronen Plesser

M. Ronen Plesser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('M. Ronen Plesser', 18)}}的其他基金

A Regional Conference Series in Mathematical String Theory
数学弦理论区域会议系列
  • 批准号:
    1643420
  • 财政年份:
    2016
  • 资助金额:
    $ 32.1万
  • 项目类别:
    Continuing Grant
Moduli Spaces of String Vacua with Four Supersymmetries
具有四个超对称性的弦真空模空间
  • 批准号:
    1521053
  • 财政年份:
    2015
  • 资助金额:
    $ 32.1万
  • 项目类别:
    Continuing Grant
A Regional Conference Series in Mathematical String Theory will be held in North Carolina at Duke University during September 1 and June 1 each year.
数学弦理论区域会议系列将于每年 9 月 1 日和 6 月 1 日在北卡罗来纳州杜克大学举行。
  • 批准号:
    1316774
  • 财政年份:
    2013
  • 资助金额:
    $ 32.1万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Chinese Physics B
  • 批准号:
    11224806
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Physics 出版资助
  • 批准号:
    11224805
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese physics B
  • 批准号:
    11024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

On the geometry of string theory and particle physics
论弦理论和粒子物理的几何
  • 批准号:
    386269-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 32.1万
  • 项目类别:
    Subatomic Physics Envelope - Individual
On the geometry of string theory and particle physics
论弦理论和粒子物理的几何
  • 批准号:
    386269-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 32.1万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Geometry from Physics: Using string theory to uncover novel geometric structures and symmetries
物理学中的几何:利用弦理论揭示新颖的几何结构和对称性
  • 批准号:
    471918-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 32.1万
  • 项目类别:
    Postdoctoral Fellowships
On the geometry of string theory and particle physics
论弦理论和粒子物理的几何
  • 批准号:
    386269-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 32.1万
  • 项目类别:
    Subatomic Physics Envelope - Individual
String Theory, Geometry and Particle Physics
弦理论、几何和粒子物理
  • 批准号:
    1417316
  • 财政年份:
    2014
  • 资助金额:
    $ 32.1万
  • 项目类别:
    Standard Grant
On the geometry of string theory and particle physics
论弦理论和粒子物理的几何
  • 批准号:
    386269-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 32.1万
  • 项目类别:
    Subatomic Physics Envelope - Individual
On the geometry of string theory and particle physics
论弦理论和粒子物理的几何
  • 批准号:
    386269-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 32.1万
  • 项目类别:
    Subatomic Physics Envelope - Individual
The geometry of string theory and its implications for physics beyond the stand model
弦理论的几何学及其对标准模型之外的物理学的影响
  • 批准号:
    386269-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 32.1万
  • 项目类别:
    Subatomic Physics Envelope - Individual
The geometry of string theory and its implications for physics beyond the stand model
弦理论的几何学及其对标准模型之外的物理学的影响
  • 批准号:
    386269-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 32.1万
  • 项目类别:
    Subatomic Physics Envelope - Individual
The geometry of string theory and its implications for physics beyond the stand model
弦理论的几何学及其对标准模型之外的物理学的影响
  • 批准号:
    386269-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 32.1万
  • 项目类别:
    Subatomic Physics Envelope - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了