Moduli Spaces of String Vacua with Four Supersymmetries
具有四个超对称性的弦真空模空间
基本信息
- 批准号:1521053
- 负责人:
- 金额:$ 31.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award funds the research activities of Professor Ronen Plesser of Duke University.String theory is the leading contender for a quantum theory of gravity and a unified description of the fundamental structure of the universe. Research in string theory in the past three decades has led to exciting new insights in physics and mathematics. Considering string propagation in nontrivial backgrounds produces physical interpretations for mathematical structures in spacetime. The interplay between mathematical and physical intuitions and techniques has enriched both fields. A notable example of this is the discovery and the many applications of mirror symmetry, a surprising relation between two distinct spaces that lead to indentical physics when used as string backgrounds. Plesser's research will build on these results and on recent progress in both fields to pursue these studies in new regimes. This work will be done in collaboration with physicists and mathematicians around the world, enhancing interdisciplinary cooperation. As a result, research in this area advances the national interest by promoting the progress of science in a particularly interdisciplinary direction. Plesser will also train graduate students and involve undergraduate students in the research. Plesser will also collaborate with local public schools to enhance science teaching and generate enthusiasm for science in young people through visits to the classroom to present specific curriculum materials developed in concert with the schools. These curriculum materials are made broadly available for use elsewhere. Moreover, the regular public stargazing events conducted by Plesser for the past decade will be enhanced by including astrophotography capabilities.More technically, Plesser will pursue various approaches to better understand the structure of the moduli space of string vacua with four unbroken supersymmetries. This includes perturbative heterotic vacua and the (0,2) superconformal field theories associated to these, as well as F-theory and M-theory compactifications on Calabi-Yau fourfolds. Each of these formulations gives a simple description of a region of the moduli space, and the relation between the two descriptions in regions of overlap is of particular interest.
该奖项资助了杜克大学的Ronen Plesser教授的研究活动。弦理论是引力量子理论和宇宙基本结构统一描述的主要竞争者。 在过去的30年里,弦理论的研究在物理学和数学领域带来了令人兴奋的新见解。考虑弦在非平凡背景中的传播,可以对时空中的数学结构做出物理解释。数学和物理的直觉和技术之间的相互作用丰富了这两个领域。一个值得注意的例子是镜像对称的发现和许多应用,这是两个不同空间之间的一种令人惊讶的关系,当用作弦背景时,它导致了相同的物理学。Plesser的研究将建立在这些结果和这两个领域的最新进展的基础上,在新的制度下进行这些研究。这项工作将与世界各地的物理学家和数学家合作完成,加强跨学科合作。 因此,这一领域的研究通过促进特别是跨学科方向的科学进步来促进国家利益。 Plesser还将培训研究生,并让本科生参与研究。 Plesser还将与当地公立学校合作,通过参观教室,展示与学校合作开发的具体课程材料,加强科学教学,激发年轻人对科学的热情。这些教材广泛提供,供其他地方使用。 此外,Plesser在过去十年中定期举办的公众观星活动将通过包括天体摄影能力而得到加强。更技术性地,Plesser将寻求各种方法来更好地理解具有四个不间断超对称的弦真空的模空间的结构。这包括微扰杂种真空和与之相关的(0,2)超共形场论,以及卡-丘四重上的F-理论和M-理论紧化。这些公式中的每一个都给出了模空间的一个区域的简单描述,并且重叠区域中的两个描述之间的关系特别有趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M. Ronen Plesser其他文献
A (0,2) mirror map
A (0,2) 镜像贴图
- DOI:
10.1007/jhep02(2011)001 - 发表时间:
2010 - 期刊:
- 影响因子:5.4
- 作者:
Ilarion V. Melnikov;M. Ronen Plesser - 通讯作者:
M. Ronen Plesser
M. Ronen Plesser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M. Ronen Plesser', 18)}}的其他基金
A Regional Conference Series in Mathematical String Theory
数学弦理论区域会议系列
- 批准号:
1643420 - 财政年份:2016
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
A Regional Conference Series in Mathematical String Theory will be held in North Carolina at Duke University during September 1 and June 1 each year.
数学弦理论区域会议系列将于每年 9 月 1 日和 6 月 1 日在北卡罗来纳州杜克大学举行。
- 批准号:
1316774 - 财政年份:2013
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
Geometry and Physics of String Compactifications
弦紧化的几何和物理
- 批准号:
1217109 - 财政年份:2012
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
相似海外基金
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2018
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2017
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2016
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2015
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Geometry and Moduli Spaces in String Theory
弦论中的代数几何和模空间
- 批准号:
1501612 - 财政年份:2015
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
Exceptional geometric structures required for string theory and M-theory: moduli spaces and formation of singularities
弦理论和 M 理论所需的特殊几何结构:模空间和奇点的形成
- 批准号:
RGPIN-2014-05050 - 财政年份:2014
- 资助金额:
$ 31.5万 - 项目类别:
Discovery Grants Program - Individual
String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
- 批准号:
1104555 - 财政年份:2011
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant
String Topology, Field Theories, and the Topology of Moduli Spaces
弦拓扑、场论和模空间拓扑
- 批准号:
0905809 - 财政年份:2009
- 资助金额:
$ 31.5万 - 项目类别:
Standard Grant
LOCALIZATION, STRING DUALITY AND MODULI SPACES
定域化、弦对偶性和模空间
- 批准号:
0705284 - 财政年份:2007
- 资助金额:
$ 31.5万 - 项目类别:
Continuing Grant