RUI: Investigation of Discontinuous Galerkin Least-Squares Finite Element Methods for Singularly Perturbed Problems

RUI:奇异摄动问题的不连续伽辽金最小二乘有限元方法研究

基本信息

  • 批准号:
    1217268
  • 负责人:
  • 金额:
    $ 15.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

The research objective of this project is to investigate discontinuousGalerkin least-squares finite element methods (DG-LS FEMs) for reaction-diffusion problems with singular perturbations. The numerical approximation of singularly perturbed problems is a practically important but still difficult subject. The analytical solutions to such problems typically contain boundary or interior layers, which cause nonphysical excessive numerical oscillations in the vicinity of layers in the solutions by standard finite element method and finite difference method. Many stabilization techniques have been developed to improve numerical solutions. The drawback of these techniques is the presence of problem-dependent parameters that need to be properly tuned according to a priori knowledge of layers, which nonetheless is not achievable in most complex problems. The DG-LS FEM is robust and efficient, which does not involve such problem-dependent parameters. The proposed research will advance knowledge and understanding of the DG-LS FEM as well as singular perturbation problems, provide a theoretical framework for the analysis of DG-LS FEMs, and establish a working principle of efficient and high quality adaptive schemes. Singularly perturbed problems have attracted a lot of attention from engineers, mathematicians and scientists because of a wide range of important applications such as fluid dynamics, electromagnetism, semiconductor research, chemotaxis, genetics, and computational biology. Numerical approximations are usually the only way for solving such problems. There is an urgent need for a problem-dependent-parameter-free numerical method for singularly perturbed problems. This project is to develop creative solutions to fulfill this need, which will lead to reliable and efficient numerical approaches for solving complex singularly perturbed reaction-diffusion problems.
本计画的研究目的是探讨奇异摄动反应扩散问题的间断伽辽金最小二乘有限元方法。奇摄动问题的数值逼近是一个重要而又困难的课题。这类问题的解析解通常包含边界层或内层,这会导致标准有限元法和有限差分法解中的层附近出现非物理的过度数值振荡。许多稳定化技术已被开发,以改善数值解。这些技术的缺点是存在的问题依赖的参数,需要根据层的先验知识,这仍然是无法实现的,在最复杂的问题进行适当的调整。DG-LS有限元法是稳健和高效的,它不涉及这样的问题依赖的参数。本文的研究将有助于加深对DG-LS有限元和奇异摄动问题的认识和理解,为DG-LS有限元分析提供理论框架,并建立高效、高质量的自适应格式的工作原理。奇摄动问题在流体力学、电磁学、半导体研究、趋化性、遗传学和计算生物学等领域有着广泛的应用,因此引起了工程师、数学家和科学家的广泛关注。数值近似通常是解决这类问题的唯一方法。奇异摄动问题迫切需要一种与问题相关的无参数数值方法。该项目旨在开发创新的解决方案来满足这一需求,这将导致可靠和有效的数值方法来解决复杂的奇摄动反应扩散问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Runchang Lin其他文献

Residual-based a posteriori error estimators for mixed finite element methods for fourth order elliptic singularly perturbed problems
四阶椭圆奇异摄动问题混合有限元方法的基于残差的后验误差估计器
Development of a Virtual Teaching Assistant System Applying Agile Methodology
应用敏捷方法论的虚拟助教系统的开发
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Biswas;Runchang Lin;R. Hanumanthgari;Sri Bala Vojjala
  • 通讯作者:
    Sri Bala Vojjala
Agile Development Process of a Web-Based Application to Improve Retention of Hispanic STEM Students
基于 Web 应用程序的敏捷开发流程可提高西班牙裔 STEM 学生的保留率
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Biswas;Runchang Lin
  • 通讯作者:
    Runchang Lin
A posteriori error analysis of multipoint flux mixed finite element methods for interface problems
界面问题多点通量混合有限元法的后验误差分析
  • DOI:
    10.1007/s10444-015-9447-7
  • 发表时间:
    2016-08
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Shaohong Du;Runchang Lin;Zhimin Zhang
  • 通讯作者:
    Zhimin Zhang
Local ultraconvergence of linear and bilinear finite element method for second order elliptic problems
二阶椭圆问题的线性和双线性有限元方法的局部超收敛

Runchang Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Runchang Lin', 18)}}的其他基金

College of Arts & Sciences Community-aid (CASC-aid)
艺术学院
  • 批准号:
    1643797
  • 财政年份:
    2016
  • 资助金额:
    $ 15.94万
  • 项目类别:
    Standard Grant
Mathematics and Engineering Best (ME-Best)
数学和工程最佳(ME-Best)
  • 批准号:
    0630865
  • 财政年份:
    2006
  • 资助金额:
    $ 15.94万
  • 项目类别:
    Standard Grant

相似海外基金

The Smart Tourism Experience: A Tourist-Centric Conceptualization and Empirical Investigation
智慧旅游体验:以游客为中心的概念化与实证研究
  • 批准号:
    24K15533
  • 财政年份:
    2024
  • 资助金额:
    $ 15.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
  • 批准号:
    2333102
  • 财政年份:
    2024
  • 资助金额:
    $ 15.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
  • 批准号:
    2331199
  • 财政年份:
    2024
  • 资助金额:
    $ 15.94万
  • 项目类别:
    Continuing Grant
Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
  • 批准号:
    2400087
  • 财政年份:
    2024
  • 资助金额:
    $ 15.94万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 15.94万
  • 项目类别:
    Standard Grant
Investigation on naphthylisoquinoline alkaloids as potential antiausterity chemotherapy for pancreatic cancer
萘基异喹啉生物碱作为胰腺癌潜在抗紧缩化疗的研究
  • 批准号:
    23K26797
  • 财政年份:
    2024
  • 资助金额:
    $ 15.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of crosstalk between Fanconi Anemia pathway and ATM for novel therapeutic strategies of chemoresistant ALT-positive high-risk neuroblastoma
范可尼贫血通路与 ATM 之间的串扰研究,用于化疗耐药 ALT 阳性高危神经母细胞瘤的新治疗策略
  • 批准号:
    24K10442
  • 财政年份:
    2024
  • 资助金额:
    $ 15.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A genome wide investigation into the roles of error-prone polymerases during human DNA replication
对易错聚合酶在人类 DNA 复制过程中的作用进行全基因组研究
  • 批准号:
    24K18094
  • 财政年份:
    2024
  • 资助金额:
    $ 15.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A Multi-Level Investigation of Engagement in Technology Transfer
参与技术转让的多层次调查
  • 批准号:
    2345612
  • 财政年份:
    2024
  • 资助金额:
    $ 15.94万
  • 项目类别:
    Standard Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
  • 批准号:
    2331200
  • 财政年份:
    2024
  • 资助金额:
    $ 15.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了