Collaborative Research: Modeling and simulation of graphene growth

合作研究:石墨烯生长的建模和模拟

基本信息

  • 批准号:
    1217303
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

Nanoscale materials hold tremendous promise for the miniaturization of devices and components in applications ranging from biomedicine to nanoelectronics. As silicon-based nanodevices reach their natural size limitations, carbon-based materials such as nanotubes and graphene have emerged as exciting alternatives. Because graphene consists of a single 2D planar layer of carbon atoms, and possesses unique physical properties, graphene is thought to be better suited for large-scale circuit design than nanotubes, which typically exhibit large intrinsic resistance in contacts that limits their effectiveness. To realize their promise, large and defect-free graphene sheets must be grown or placed on non-metallic substrates. It is therefore important to understand the mechanisms that govern the growth and morphology of graphene. Indeed, controlling the graphene morphology has proven to be a major challenge, and the kinetics of graphene growth remain poorly understood. The investigators will address these issues here. The main objective of this proposal is to investigate the nonlinear dynamics of the mechanisms that govern the growth and morphology of graphene and develop strategies to control its growth by (1) developing and applying state-of-the-art adaptive numerical methods to large-scale computation and (2) performing analytical, numerical and modelling studies of important constituent processes. More specifically, the investigators will perform fundamental studies of the growth of graphene films from a thermal treatment of a silicon carbide substrate. This process is unique among epitaxial growth mechanisms because there is no deposition flux of carbon. Rather, silicon desorbs from the surface freeing carbon atoms to diffuse on the surface and nucleate first to form a precursor layer and then a graphene layer. A significant challenge is that the structure and morphology of graphene layers is determined both by atomic-scale phenomena and by the elastic interaction of surface features over length scales of hundreds of nanometers. Consequently, no single model is able to describe all the processes involved in the formation of graphene sheets on silicon carbide. The investigators will therefore adopt a multiple-scale approach that includes atomic scale simulations, genetic algorithms for determination of surface structure, and continuum models for shape evolution and patterning. The highly nonlinear nature of these problems makes fast, accurate and robust numerical methods essential to their study.Nanocrystalline materials have physical properties that make them ideally suited for a wide range of potential applications including areas of Federal strategic interests such as nanotechnology, information technology (via advanced optoelectronic and magnetic storage units), biotechnology, (via biological or chemical sensors), and energy technology (via photovoltaic devices). Because of their unique structural and electronic properties, carbon-based devices, such as defect-free graphene layers, can extend miniaturization beyond the natural limits of their silicon-based counterparts. Recent advances in experimental techniques indicate that the key obstacle in achieving large and uniform graphene layers necessary for device applications is the roughness of the surface on which it grows. However, a quantitative understanding of the interaction among the surface properties and graphene growth processes remains elusive. The investigators will develop new mathematical theory and advance the state-of-the-art in numerical simulation to perform fundamental studies of graphene growth. These studies will provide guidance in the quantitative interpretation of experimental measurements on the dynamics of graphene layer formation and will suggest mechanisms to control graphene growth. The theory and methods developed here will also be useful in the study of other nanoscale materials arrays of semiconductor quantum dots. Two Ph.D. students will receive interdisciplinary training while performing the proposed work. The investigators will develop and teach a course on crystal and epitaxial growth for gifted high school students as part of the Calif. State Summer School for Mathematics and Science (COSMOS) at UC Irvine.
纳米材料在从生物医学到纳米电子学的应用中为器件和组件的小型化提供了巨大的希望。随着硅基纳米器件达到其自然尺寸限制,碳基材料如纳米管和石墨烯已成为令人兴奋的替代品。由于石墨烯由碳原子的单个2D平面层组成,并且具有独特的物理特性,因此石墨烯被认为比纳米管更适合于大规模电路设计,纳米管通常在接触中表现出较大的固有电阻,这限制了它们的有效性。为了实现它们的承诺,必须在非金属基底上生长或放置大型无缺陷的石墨烯片。因此,重要的是要了解控制石墨烯的生长和形态的机制。事实上,控制石墨烯形态已被证明是一个重大挑战,石墨烯生长的动力学仍然知之甚少。调查人员将在这里解决这些问题。该提案的主要目标是研究控制石墨烯生长和形态的机制的非线性动力学,并制定控制其生长的策略,方法是:(1)开发和应用最先进的自适应数值方法进行大规模计算;(2)对重要的组成过程进行分析、数值和建模研究。更具体地说,研究人员将对碳化硅衬底的热处理生长石墨烯薄膜进行基础研究。这一过程在外延生长机制中是独特的,因为没有碳的沉积通量。相反,硅从表面解吸,释放碳原子以在表面上扩散并首先成核以形成前体层,然后形成石墨烯层。一个重大的挑战是,石墨烯层的结构和形态是由原子尺度的现象和表面特征在数百纳米的长度尺度上的弹性相互作用决定的。因此,没有一个单一的模型能够描述在碳化硅上形成石墨烯片所涉及的所有过程。因此,研究人员将采用多尺度方法,包括原子尺度模拟,用于确定表面结构的遗传算法,以及用于形状演变和图案化的连续模型。这些问题的高度非线性性质使得快速、准确和鲁棒的数值方法对它们的研究至关重要。纳米晶体材料具有的物理特性使它们非常适合于广泛的潜在应用,包括联邦战略利益领域,如纳米技术、信息技术(通过先进的光电和磁存储单元)、生物技术(通过生物或化学传感器)和能源技术(通过光伏器件)。由于其独特的结构和电子特性,碳基器件(如无缺陷石墨烯层)可以将微型化扩展到硅基器件的自然极限之外。实验技术的最新进展表明,实现器件应用所需的大而均匀的石墨烯层的关键障碍是其生长表面的粗糙度。然而,表面性质和石墨烯生长过程之间的相互作用的定量理解仍然难以捉摸。研究人员将开发新的数学理论,并推进最先进的数值模拟,以进行石墨烯生长的基础研究。这些研究将为石墨烯层形成动力学实验测量的定量解释提供指导,并将提出控制石墨烯生长的机制。本文的理论和方法对其他纳米材料半导体量子点阵列的研究也有一定的借鉴意义。两个博士学生将在执行拟议工作的同时接受跨学科培训。研究人员将开发和教授晶体和外延生长课程的天才高中学生作为加州的一部分。加州大学欧文分校数学与科学暑期学校(COSMOS)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Lowengrub其他文献

PIEZO1 regulates leader cell formation and cellular coordination during collective cell migration: An integrative multiscale modeling and experimental study
  • DOI:
    10.1016/j.bpj.2022.11.1520
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Jesse Holt;Jinghao Chen;Elizabeth Evans;John Lowengrub;Medha M. Pathak
  • 通讯作者:
    Medha M. Pathak
Self-similar evolution of a precipitate in inhomogeneous elastic media
  • DOI:
    10.1016/j.jcrysgro.2012.04.020
  • 发表时间:
    2012-07-15
  • 期刊:
  • 影响因子:
  • 作者:
    Amlan Barua;Shuwang Li;Xiaofan Li;John Lowengrub
  • 通讯作者:
    John Lowengrub
Mathematical modeling of cancer immunotherapy for personalized clinical translation
用于个性化临床转化的癌症免疫治疗的数学建模
  • DOI:
    10.1038/s43588-022-00377-z
  • 发表时间:
    2022-12-19
  • 期刊:
  • 影响因子:
    18.300
  • 作者:
    Joseph D. Butner;Prashant Dogra;Caroline Chung;Renata Pasqualini;Wadih Arap;John Lowengrub;Vittorio Cristini;Zhihui Wang
  • 通讯作者:
    Zhihui Wang

John Lowengrub的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Lowengrub', 18)}}的其他基金

Collaborative Research: : Mathematical modeling and computation of morphological instabilities in reactive fluids driven out of equilibrium
合作研究::失去平衡的反应流体形态不稳定性的数学建模和计算
  • 批准号:
    2309800
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling and Computation of Three-Dimensional Multicomponent Vesicles in Complex Flow Domains
合作研究:复杂流域中三维多组分囊泡的建模与计算
  • 批准号:
    1719960
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: A New Multiscale Methodology and Application to Tumor Growth modeling
协作研究:一种新的多尺度方法及其在肿瘤生长建模中的应用
  • 批准号:
    1714973
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Modeling and Simulation of the Growth of Graphene Multilayers and Heterostructures
合作研究:石墨烯多层和异质结构生长的建模和模拟
  • 批准号:
    1522775
  • 财政年份:
    2015
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Modeling of Mammary Gland Development
合作研究:乳腺发育的多尺度建模
  • 批准号:
    1263796
  • 财政年份:
    2013
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Reactive instabilities, colloids and interfacial flows: Experiments, models and numerics
合作研究:反应不稳定性、胶体和界面流动:实验、模型和数值
  • 批准号:
    1217273
  • 财政年份:
    2012
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational and theoretical approaches for the morphological control of material microstructures
合作研究:材料微观结构形态控制的计算和理论方法
  • 批准号:
    0914720
  • 财政年份:
    2009
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational problems in heterogeneous nanomaterials
合作研究:异质纳米材料的计算问题
  • 批准号:
    0915128
  • 财政年份:
    2009
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Modeling of Solid Tumor Growth
合作研究:实体瘤生长的多尺度建模
  • 批准号:
    0818126
  • 财政年份:
    2008
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Computational Problems For Interfaces With Bending Stiffness In Strongly Anisotropic Thin Films And Inhomogeneous Biomembranes
强各向异性薄膜和不均匀生物膜中具有弯曲刚度的界面的计算问题
  • 批准号:
    0612878
  • 财政年份:
    2006
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344260
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323649
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了