Collaborative Research: : Mathematical modeling and computation of morphological instabilities in reactive fluids driven out of equilibrium
合作研究::失去平衡的反应流体形态不稳定性的数学建模和计算
基本信息
- 批准号:2309800
- 负责人:
- 金额:$ 27.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Novel morphological instabilities and phase changes generated by localized reactions in interfacial regions between reacting fluids can be found in physical, biological and engineering systems such as smoldering flame fronts, biomembrane formation, and oil recovery systems. For instance, the formation of solid-like gels at water-oil interfaces during oil recovery processes can be unfavorable because gel build-up can clog wells and pipelines. On the other hand, gel formation can actually be beneficial in flow diversion processes by diverting the flow away from porous rocks and enhancing oil recovery. The interface dynamics and morphologies of this open system cannot be predicted solely by an equilibrium phase diagram, and mathematical models and numerical simulations are needed to fully characterize the nonlinear, out-of-equilibrium dynamics. This project aims to establish a computational framework for models of non-equilibrium phenomena, and design algorithms and experiments to investigate the interface dynamics of complex, reactive fluids. This project will also provide interdisciplinary training for students, and research activities will help develop the next generation of mathematicians, scientists and engineers. The team of PIs consists of the three researchers from three different institutions, where training of graduate students on the topics of the project is expected. Studies of two or more fluids that are reactive, and flow through a porous medium, are fundamental to many fields. At equilibrium, the mixture may behave like a liquid or a gel (viscoelastic solid) depending on the concentrations of the components according to an equilibrium phase diagram. When driven out of equilibrium by, for instance, injection of one fluid into another, the morphology of the expanding interface between them can be very complex and strongly depends on an interplay between thermodynamic phase behavior and hydrodynamic forces. This project builds upon breakthroughs in modeling, computation, and experimental techniques to develop a unified mathematical framework that resolves the interface dynamics of reactive fluids driven out of equilibrium. Thermodynamically consistent equations governing the non-equilibrium dynamics of ternary reacting systems of immiscible fluids will be derived, focusing on the radial Hele-Shaw geometry as a prototype. Both sharp interface and diffuse interface numerical schemes (energy-stable, adaptive finite-difference methods using scalar auxiliary variables) will be developed and validated against asymptotic reductions to sharp interface models and new experimental data generated from this project. The integrated mathematical, computational and experimental approach will provide a framework for understanding the nonequilibrium dynamics, predicting the emergence of complex patterns and developing strategies for controlling the pattern formation process in fundamental multiphysics interface problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在物理、生物和工程系统中,如阴燃火焰前锋、生物膜形成和采油系统中,可以发现由反应流体界面区域的局部反应产生的新的形态不稳定性和相变。例如,在石油开采过程中,在水-油界面形成类固体凝胶可能是不利的,因为凝胶聚集会堵塞油井和管道。另一方面,凝胶的形成在导流过程中实际上是有益的,因为它将流体从多孔岩石中分流出来,并提高了石油采收率。这种开放体系的界面动力学和形态不能仅用平衡相图来预测,需要数学模型和数值模拟来充分表征这种非线性的、非平衡的动力学。该项目旨在建立非平衡现象模型的计算框架,并设计算法和实验来研究复杂的反应性流体的界面动力学。该项目还将为学生提供跨学科培训,研究活动将有助于培养下一代数学家、科学家和工程师。PIS团队由来自三个不同机构的三名研究人员组成,预计将对研究生进行有关项目主题的培训。研究在多孔介质中流动的两种或两种以上具有反应性的流体,是许多领域的基础。在平衡时,根据平衡相图,混合物的行为可能像液体或凝胶(粘弹性固体),这取决于组分的浓度。例如,当通过将一种流体注入另一种流体而使其失去平衡时,它们之间的膨胀界面的形态可能非常复杂,并且强烈依赖于热力学相态和流体动力之间的相互作用。这个项目建立在建模、计算和实验技术的突破之上,以开发一个统一的数学框架,解决被驱使失去平衡的反应流体的界面动力学。以径向Hele-Shaw几何构型为原型,推导出控制不相容流体三元反应体系非平衡动力学的热力学一致性方程。尖锐界面和扩散界面数值格式(能量稳定的、使用标量辅助变量的自适应有限差分方法)都将被开发出来,并通过对尖锐界面模型的渐近约化和本项目产生的新实验数据进行验证。综合的数学、计算和实验方法将为理解非平衡动力学、预测复杂模式的出现和开发控制基本多物理界面问题中的模式形成过程的策略提供框架。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Lowengrub其他文献
PIEZO1 regulates leader cell formation and cellular coordination during collective cell migration: An integrative multiscale modeling and experimental study
- DOI:
10.1016/j.bpj.2022.11.1520 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Jesse Holt;Jinghao Chen;Elizabeth Evans;John Lowengrub;Medha M. Pathak - 通讯作者:
Medha M. Pathak
Mathematical modeling of cancer immunotherapy for personalized clinical translation
用于个性化临床转化的癌症免疫治疗的数学建模
- DOI:
10.1038/s43588-022-00377-z - 发表时间:
2022-12-19 - 期刊:
- 影响因子:18.300
- 作者:
Joseph D. Butner;Prashant Dogra;Caroline Chung;Renata Pasqualini;Wadih Arap;John Lowengrub;Vittorio Cristini;Zhihui Wang - 通讯作者:
Zhihui Wang
Self-similar evolution of a precipitate in inhomogeneous elastic media
- DOI:
10.1016/j.jcrysgro.2012.04.020 - 发表时间:
2012-07-15 - 期刊:
- 影响因子:
- 作者:
Amlan Barua;Shuwang Li;Xiaofan Li;John Lowengrub - 通讯作者:
John Lowengrub
John Lowengrub的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Lowengrub', 18)}}的其他基金
Collaborative Research: Modeling and Computation of Three-Dimensional Multicomponent Vesicles in Complex Flow Domains
合作研究:复杂流域中三维多组分囊泡的建模与计算
- 批准号:
1719960 - 财政年份:2017
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Collaborative Research: A New Multiscale Methodology and Application to Tumor Growth modeling
协作研究:一种新的多尺度方法及其在肿瘤生长建模中的应用
- 批准号:
1714973 - 财政年份:2017
- 资助金额:
$ 27.31万 - 项目类别:
Continuing Grant
Collaborative Research: Modeling and Simulation of the Growth of Graphene Multilayers and Heterostructures
合作研究:石墨烯多层和异质结构生长的建模和模拟
- 批准号:
1522775 - 财政年份:2015
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Modeling of Mammary Gland Development
合作研究:乳腺发育的多尺度建模
- 批准号:
1263796 - 财政年份:2013
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Collaborative Research: Reactive instabilities, colloids and interfacial flows: Experiments, models and numerics
合作研究:反应不稳定性、胶体和界面流动:实验、模型和数值
- 批准号:
1217273 - 财政年份:2012
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Collaborative Research: Modeling and simulation of graphene growth
合作研究:石墨烯生长的建模和模拟
- 批准号:
1217303 - 财政年份:2012
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Collaborative Research: Computational and theoretical approaches for the morphological control of material microstructures
合作研究:材料微观结构形态控制的计算和理论方法
- 批准号:
0914720 - 财政年份:2009
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Collaborative Research: Computational problems in heterogeneous nanomaterials
合作研究:异质纳米材料的计算问题
- 批准号:
0915128 - 财政年份:2009
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Modeling of Solid Tumor Growth
合作研究:实体瘤生长的多尺度建模
- 批准号:
0818126 - 财政年份:2008
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Computational Problems For Interfaces With Bending Stiffness In Strongly Anisotropic Thin Films And Inhomogeneous Biomembranes
强各向异性薄膜和不均匀生物膜中具有弯曲刚度的界面的计算问题
- 批准号:
0612878 - 财政年份:2006
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317570 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317572 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317569 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317571 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401258 - 财政年份:2024
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant
Collaborative Research: Supporting Pre-Service Teachers Mathematical Discourse through Co-Design of Teaching Simulation Tools
协作研究:通过教学模拟工具的共同设计支持职前教师的数学话语
- 批准号:
2315437 - 财政年份:2023
- 资助金额:
$ 27.31万 - 项目类别:
Standard Grant