ATD: Statistical methods for functional metagenomics in biothreat detection
ATD:生物威胁检测中功能宏基因组学的统计方法
基本信息
- 批准号:1222592
- 负责人:
- 金额:$ 72.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-throughput next generation sequencing technologies provide a powerful way to detect biological threats from metagenomic samples taken directly from the environment without prior knowledge of sample composition. In the analysis of metatranscriptomic data sets, researchers can examine and compare the active gene functions and pathways in the environmental or host-associated metagenomic samples with the presence or absence of biological threat agents (organisms or viruses). This is accomplished by identifying which genes are active in a sample and characterizing which functional patterns are associated with the presence of biothreat agents. Moreover, functional analysis of metagenomes can explore how functional diversity of microbial communities correlate with important biological factors of interest including the presence of a particular threat organism and its virulence level. In this research the investigators are to build rigorous statistical models and rapid computational algorithms to define detectable signatures of biological threats based on metatranscriptomic sequencing data. In particular, they study to (1) develop a probabilistic framework for characterizing the gene content in one metatranscriptomic sample, with sequencing errors considered; (2) compare multiple metatranscriptomic samples to detect statistically significant functional patterns that are associated with a biothreat agent; (3)identify "threat marker" based on the functional patterns that are linked to the presence of a biothreat agent and its virulence level where a novel statistical approach for high-dimensional variable selection problem will be proposed; (4) develop an R software package - FunctionMeta - implementing the statistical models and computational algorithms. In addition, standalone software - FunctionSim - will be developed for generating synthesized sequencing data.Known or newly emerging infectious agents, no matter whether they occurs naturally or dispersed intentionally, are a potential threat we might have to face in our modern and globalized society. In this research the investigators develop novel statistical and computational methodologies for rapid detection of biological threats based on metatranscriptomic sequencing data. Moreover, the algorithms are applicable for other functional metagenomics studies. Both the R software package and the sequence simulator tool will be made publicly available for the research community. Besides training graduate students and postdoc in the cutting-edge statistical and interdisciplinary research, the project will develop an online teaching module (posted as a series of University iTunes videos) for high school students to have an opportunity to learn the new science of metagenomics and its applications in forensics and environmental biology with emphasis of statistics in biological and health science research.
高通量下一代测序技术提供了一种强大的方法来检测直接从环境中提取的宏基因组样品的生物威胁,而无需事先了解样品组成。在对元基因组数据集的分析中,研究人员可以检查和比较环境或宿主相关元基因组样本中存在或不存在生物威胁因子(生物体或病毒)的活性基因功能和途径。这是通过确定样本中哪些基因是活跃的,并确定哪些功能模式与生物威胁剂的存在有关来实现的。此外,宏基因组的功能分析可以探索微生物群落的功能多样性如何与重要的生物因素相关,包括特定威胁生物的存在及其毒力水平。在这项研究中,研究人员将建立严格的统计模型和快速计算算法,以定义基于亚转录组测序数据的生物威胁的可检测特征。特别是,他们研究(1)开发一个概率框架,用于表征一个亚转录组样本中的基因含量,考虑到测序错误;(2)比较多个亚转录组学样本,以检测与生物威胁剂相关的统计上显著的功能模式;(3)根据与生物威胁因子存在及其毒力水平相关的功能模式识别“威胁标记”,并提出一种新的高维变量选择问题的统计方法;(4)开发R软件包FunctionMeta,实现统计模型和计算算法。此外,将开发用于生成合成测序数据的独立软件FunctionSim。已知的或新出现的传染性病原体,无论它们是自然发生的还是故意传播的,都是我们在现代和全球化社会中可能不得不面对的潜在威胁。在这项研究中,研究人员开发了新的统计和计算方法,用于基于亚转录组测序数据的生物威胁的快速检测。此外,该算法也适用于其他功能宏基因组学研究。R软件包和序列模拟器工具都将公开提供给研究界。除了在前沿统计学和跨学科研究方面培养研究生和博士后外,该项目还将开发一个在线教学模块(以大学iTunes系列视频的形式发布),让高中生有机会学习元基因组学这门新科学及其在法医学和环境生物学中的应用,重点是统计学在生物和健康科学研究中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lingling An其他文献
Hierarchical Reinforcement Learning from Demonstration via Reachability-Based Reward Shaping
通过基于可达性的奖励塑造进行分层强化学习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.1
- 作者:
Xiaozhu Gao;Jinhui Liu;Bo Wan;Lingling An - 通讯作者:
Lingling An
Statistical Approach of Functional Profiling for a Microbial Community
微生物群落功能分析的统计方法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.7
- 作者:
Lingling An;Nauromal Pookhao;Hongmei Jiang;Jiannong Xu - 通讯作者:
Jiannong Xu
A Fluorescence Ratiometric Protein Assay Using Light‐Harvesting Conjugated Polymers
使用光捕获共轭聚合物进行荧光比率蛋白质测定
- DOI:
10.1002/marc.200600214 - 发表时间:
2006 - 期刊:
- 影响因子:4.6
- 作者:
Lingling An;Yanli Tang;Shu Wang;Yuliang Li;Daoben Zhu - 通讯作者:
Daoben Zhu
CLUSTERING A SERIES OF REPLICATED POLYPLOID GENE EXPRESSION EXPERIMENTS IN MAIZE
玉米中一系列重复多倍体基因表达实验的聚类
- DOI:
10.4148/2475-7772.1120 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Lingling An;N. C. Riddle;J. Birchler;R. Doerge - 通讯作者:
R. Doerge
DYNAMIC CLUSTERING OF CELL-CYCLE MICROARRAY DATA
细胞周期微阵列数据的动态聚类
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Lingling An;R. Doerge - 通讯作者:
R. Doerge
Lingling An的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
- 批准号:
MR/Z503770/1 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Research Grant
CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
- 批准号:
2422478 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Continuing Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
- 批准号:
DP240100143 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Discovery Projects
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Continuing Grant
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
- 批准号:
24K16343 - 财政年份:2024
- 资助金额:
$ 72.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
- 批准号:
2332442 - 财政年份:2023
- 资助金额:
$ 72.3万 - 项目类别:
Standard Grant
Statistical and Psychometric Methods for Measuring the Extent to Which Culturally Responsive Assessments Reduce Cultural Bias
用于衡量文化响应评估减少文化偏见程度的统计和心理测量方法
- 批准号:
2243041 - 财政年份:2023
- 资助金额:
$ 72.3万 - 项目类别:
Standard Grant
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 72.3万 - 项目类别:
Standard Grant
CAREER: Practical algorithms and high dimensional statistical methods for multimodal haplotype modelling
职业:多模态单倍型建模的实用算法和高维统计方法
- 批准号:
2239870 - 财政年份:2023
- 资助金额:
$ 72.3万 - 项目类别:
Standard Grant
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
- 批准号:
23H03353 - 财政年份:2023
- 资助金额:
$ 72.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




