Coarse-to-fine Discovery for Genetic Association
遗传关联的从粗到细的发现
基本信息
- 批准号:1228248
- 负责人:
- 金额:$ 63.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mendelian traits are governed by single genes, and methods to identifythese genes have been remarkably successful. In stark contrast,complex traits result from multiple genetic variants that areindividually neither necessary nor sufficient, often interacting witheach other and the environment. Indeed, collectively, geneticvariants identified to date for complex traits typically explain lessthan 10% of the phenotype variance. No unified computational andstatistical framework has been advanced for organizing the discoveryprocess. To date, a single strategy has dominated: staticvariant-by-variant analysis. In contrast, the investigators propose anew coarse-to-fine statistical framework motivated by the biomedicalhypothesis that mutations contributing to a specific disease clusterin specific pathways, and in genes within these pathways. Simulationsdemonstrate that multi-scale, hierarchical coarse-to-fine sequentialtests have greater power than conventional methods under thishypothesis. The researchers convert these heuristics into mathematicsand provide a comprehensive analysis, both empirical and theoretical,of the trade-offs resulting from the introduction of carefully chosenbiases about the distribution of active variants within genes andpathways. The new methods are applied to data from real genome-wideassociation studies (GWAS) with large cohorts to validate theirutility.Knowing the genetic variants that contribute to cardiovasculardisease, diabetes, autism, and other prevalent disorders would havegreat value in identifying drug targets, predicting people at risk,and suggesting personalized therapies. These diseases are not causedby mutations in single genes, however, but by multiple mutations thatcombine to disrupt multi-gene biological pathways. The investigatorstherefore develop a new statistical framework that begins the searchfor disease-risk genes at the pathway level, then sequentially narrowsthe search to genes within pathways and alleles within genes.Successful applications to ongoing human genetic studies involvingtens to hundreds of thousands of people identify genes contributing tocardiovascular disease. More generally, the coarse-to-finestatistical framework has great value in the current era of "bigdata", with increasingly large data volumes calling for innovativestatistical methods.
孟德尔性状是由单基因控制的,鉴定这些基因的方法已经非常成功。 与此形成鲜明对比的是,复杂的性状是由多个遗传变异引起的,这些遗传变异在个体上既不是必要的,也不是充分的,它们经常与彼此和环境相互作用。 事实上,总的来说,迄今为止发现的复杂性状的遗传变异通常解释不到10%的表型变异。 没有统一的计算和统计框架已经先进的组织发现过程。 到目前为止,一个单一的策略占主导地位:静态变量分析。 相反,研究人员提出了一种新的由粗到细的统计框架,其动机是生物医学假设,即导致特定疾病的突变聚集在特定的通路中,以及这些通路中的基因中。 仿真结果表明,多尺度,分层的粗到细序贯测试有更大的权力比传统的方法在此假设。 研究人员将这些理论转化为实证,并提供了一个全面的分析,既有经验的,也有理论的,对引入精心选择的关于基因和途径内活性变体分布的偏见所产生的权衡。 这些新方法被应用于真实的全基因组关联研究(GWAS)的大样本数据,以验证其效用。了解导致心血管疾病、糖尿病、自闭症和其他流行疾病的遗传变异,将对确定药物靶点、预测高危人群和提出个性化治疗方案具有重要价值。 然而,这些疾病不是由单个基因突变引起的,而是由多个突变结合起来破坏多基因生物途径引起的。 因此,研究人员开发了一个新的统计框架,从通路水平开始寻找疾病风险基因,然后依次将搜索范围缩小到通路内的基因和基因内的等位基因。成功应用于正在进行的涉及数万至数十万人的人类遗传研究,可以识别出导致心血管疾病的基因。 更一般地说,从粗到细的统计框架在当前的“大数据”时代具有巨大价值,越来越大的数据量需要创新的统计方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald Geman其他文献
Tackling the widespread and critical impact of batch effects in high-throughput data
解决批效应在高通量数据中广泛且关键的影响
- DOI:
10.1038/nrg2825 - 发表时间:
2010-09-14 - 期刊:
- 影响因子:52.000
- 作者:
Jeffrey T. Leek;Robert B. Scharpf;Héctor Corrada Bravo;David Simcha;Benjamin Langmead;W. Evan Johnson;Donald Geman;Keith Baggerly;Rafael A. Irizarry - 通讯作者:
Rafael A. Irizarry
On the approximate local growth of multidimensional random fields
- DOI:
10.1007/bf00537267 - 发表时间:
1977-01-01 - 期刊:
- 影响因子:1.600
- 作者:
Donald Geman - 通讯作者:
Donald Geman
Cellular and molecular neuroscience
细胞和分子神经科学
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Richard Eisenberg;A. Fersht;D. Piperno;Natasha V. Raikhel;Neil H. Shubin;Solomon H. Snyder;B. L. Turner;Peter K. Vogt;Stephen T. Warren;David A. Weitz;William C. Clark;N. Dickson;Pamela A. Matson;D. Denlinger;J. Eppig;R. M. Roberts;Linda J. Saif;Richard G. Klein;C. O. Lovejoy;O. JamesF.;Connell;Elsa M. Redmond;Peter J. Bickel;D. Donoho;Donald Geman;J. Sethian;D. Awschalom;Matthew P. Fisher;Zachary Fisk;John D. Weeks;M. Botchan;F. U. Hartl;Edward D. Korn;S. Kowalczykowski;M. Marletta;K. Mizuuchi;Dinshaw Patel;Brenda A. Schulman;James A. Wells;Denis Duboule;Brigid L. M. Hogan;Roel Nusse;Eric N. Olson;M. Rosbash;Gertrud M. Schüpbach;David E. Clapham;Pietro V. De Camilli;R. Huganir;Yuh;J. Nathans;Charles F. Stevens;Joseph S. Takahashi;G. Turrigiano;S. J. Benkovic;Harry B. Gray;Jack Halpern;Michael L. Klein;Raphael D. Levine;T. Mallouk;T. Marks;J. Meinwald;P. Rossky;D. Tirrell;eld;T. Cerling;W. G. Ernst;A. Ravishankara;Alexis T. Bell;James J. Collins;Mark E. Davis;P. Debenedetti;J. Dumesic;Evelyn L. Hu;Rakesh K. Jain;John A. Rogers;J. Seinfeld;D. Futuyma;Daniel L. Hartl;D. M. Hillis;David Jablonski;R. Lenski;Gene E. Robinson;J. Strassmann;Kathryn V. Anderson;John Carlson;Iva S. Greenwald;P. Hanawalt;Mary;D. E. Koshland;R. DeFries;Susan Hanson;Robert L. Coffman;Peter Cresswell;K. C. Garcia;T. W. Mak;P. Marrack;R. Medzhitov;Carl F. Nathan;Lawrence Steinman;Tadatsugu Taniguchi;Arthur Weiss;J. Bennetzen;James C. Carrington;Vicki L. Chandler;B. Staskawicz - 通讯作者:
B. Staskawicz
Local times and supermartingales
- DOI:
10.1007/bf00532713 - 发表时间:
1974-01-01 - 期刊:
- 影响因子:1.600
- 作者:
Donald Geman;Joseph Horowitz - 通讯作者:
Joseph Horowitz
Donald Geman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald Geman', 18)}}的其他基金
Collaborative Research: SCH: Integrated Analysis of Single-Cell and Spatially Resolved Omics Data
合作研究:SCH:单细胞和空间解析组学数据的综合分析
- 批准号:
2124230 - 财政年份:2021
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant
RI: Medium: Active Scene Interpretation by Entropy Pursuit
RI:中:熵追踪的活动场景解释
- 批准号:
0964416 - 财政年份:2010
- 资助金额:
$ 63.5万 - 项目类别:
Continuing Grant
MSPA-MCS: Small-sample Network Inference in Computational Vision and Biology
MSPA-MCS:计算视觉和生物学中的小样本网络推理
- 批准号:
0625687 - 财政年份:2006
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant
ITR - (ASE+NHS) - (dmc+int): Triage and the Automated Annotation of Large Image Data Sets
ITR - (ASE NHS) - (dmc int):大图像数据集的分类和自动注释
- 批准号:
0427223 - 财政年份:2004
- 资助金额:
$ 63.5万 - 项目类别:
Continuing Grant
ITR: Invariant Detection and Interpretation of Specific Objects in Image Data
ITR:图像数据中特定对象的不变检测和解释
- 批准号:
0219016 - 财政年份:2002
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Stochastic Relaxationand Simulated Annealing to Problems of Inference and Optimization
数学科学:随机松弛和模拟退火在推理和优化问题中的应用
- 批准号:
8401927 - 财政年份:1984
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant
Research in Stochastic Processes and Mathematical Physics
随机过程和数学物理研究
- 批准号:
8002940 - 财政年份:1980
- 资助金额:
$ 63.5万 - 项目类别:
Continuing Grant
相似国自然基金
MAP2的m6A甲基化在七氟烷引起SST神经元树突发育异常及精细运动损伤中的作用机制研究
- 批准号:82371276
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
辣椒胞质雄性不育恢复性主效基因精密图谱分析
- 批准号:30800752
- 批准年份:2008
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
控制厚皮甜瓜花性型基因“A“的精细构图及标记辅助育种
- 批准号:30471113
- 批准年份:2004
- 资助金额:21.0 万元
- 项目类别:面上项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 63.5万 - 项目类别:
Fellowship
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
- 批准号:
MR/Y020200/1 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Fellowship
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
- 批准号:
2244690 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant
AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
- 批准号:
24K02996 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fine-grained music source separation with deep learning models
利用深度学习模型进行细粒度音乐源分离
- 批准号:
10107090 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Collaborative R&D
Integrating Perception and Communication: The Function of Acoustic Fine Structure in Natural Zebra Finch Communication
感知与交流的整合:声学精细结构在天然斑胸草雀交流中的作用
- 批准号:
2321788 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant
RII Track-4:NSF: Federated Analytics Systems with Fine-grained Knowledge Comprehension: Achieving Accuracy with Privacy
RII Track-4:NSF:具有细粒度知识理解的联合分析系统:通过隐私实现准确性
- 批准号:
2327480 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant
ART: Facilitating Impactful New Entrepreneurs to Accelerate Research Translation (FINE ART)
ART:促进有影响力的新企业家加速研究转化(FINE ART)
- 批准号:
2331351 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Cooperative Agreement
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2348589 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Standard Grant
CAREER: Distances and matchings under the lens of fine-grained complexity
职业:细粒度复杂性镜头下的距离和匹配
- 批准号:
2337901 - 财政年份:2024
- 资助金额:
$ 63.5万 - 项目类别:
Continuing Grant