ITR: Invariant Detection and Interpretation of Specific Objects in Image Data

ITR:图像数据中特定对象的不变检测和解释

基本信息

  • 批准号:
    0219016
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-10-01 至 2005-09-30
  • 项目状态:
    已结题

项目摘要

AbstractPI: Donald J GemanTitle: ITR SMALL: Invariant Detection and Interpretation of Specific Objects in Image DataThe area of investigation is automated scene analysis. The main objective is to detect the appearance in image data of objects from a small repertoire. Two key liabilities in current methods are insufficient invariance, both photometric and geometric, and inefficient computation. To confront these difficulties, a unified statistical and computational framework is proposed which is based on a coarse-to-fine sequence of approximations to a full Bayesian model. Research topics include both algorithmic and mathematical issues arising in coarse-to-fine search, model selection and deformable shape analysis. The interpretation of natural scenes is effortless for human beings but is the main challenge of artificial vision. This "semantic gap" has largely resisted any satisfying solution and impedes scientific and technological advances in many areas, including automated medical diagnosis, industrial automation, and effective security and surveillance. The general objective of this project is to design computer algorithms for detecting and interpreting certain objects appearing in still pictures in order to relieve humans of wearisome visual search tasks in medical imaging, law enforcement, industrial inspection and everyday life
摘要PI:Donald J GemanTitle:ITR SMALL:图像数据中特定对象的不变检测和解释研究领域是自动场景分析。主要目的是检测来自一个小曲目的对象在图像数据中的外观。当前方法的两个主要缺陷是光度学和几何学的不变性不足,以及计算效率低下。为了应对这些困难,提出了一个统一的统计和计算框架,该框架基于对完整贝叶斯模型的从粗到精的近似序列。研究主题包括从粗到精的搜索、模型选择和变形形状分析中出现的算法和数学问题。对自然场景的解释对人类来说是毫不费力的,但这是人工视觉的主要挑战。这种“语义鸿沟”在很大程度上阻碍了任何令人满意的解决方案,并阻碍了许多领域的科技进步,包括自动化医疗诊断、工业自动化以及有效的安全和监控。这个项目的总体目标是设计计算机算法来检测和解释出现在静止图像中的特定对象,以便将人类从医学成像、执法、工业检查和日常生活中令人厌烦的视觉搜索任务中解放出来

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Donald Geman其他文献

Tackling the widespread and critical impact of batch effects in high-throughput data
解决批效应在高通量数据中广泛且关键的影响
  • DOI:
    10.1038/nrg2825
  • 发表时间:
    2010-09-14
  • 期刊:
  • 影响因子:
    52.000
  • 作者:
    Jeffrey T. Leek;Robert B. Scharpf;Héctor Corrada Bravo;David Simcha;Benjamin Langmead;W. Evan Johnson;Donald Geman;Keith Baggerly;Rafael A. Irizarry
  • 通讯作者:
    Rafael A. Irizarry
On the approximate local growth of multidimensional random fields
Cellular and molecular neuroscience
细胞和分子神经科学
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Eisenberg;A. Fersht;D. Piperno;Natasha V. Raikhel;Neil H. Shubin;Solomon H. Snyder;B. L. Turner;Peter K. Vogt;Stephen T. Warren;David A. Weitz;William C. Clark;N. Dickson;Pamela A. Matson;D. Denlinger;J. Eppig;R. M. Roberts;Linda J. Saif;Richard G. Klein;C. O. Lovejoy;O. JamesF.;Connell;Elsa M. Redmond;Peter J. Bickel;D. Donoho;Donald Geman;J. Sethian;D. Awschalom;Matthew P. Fisher;Zachary Fisk;John D. Weeks;M. Botchan;F. U. Hartl;Edward D. Korn;S. Kowalczykowski;M. Marletta;K. Mizuuchi;Dinshaw Patel;Brenda A. Schulman;James A. Wells;Denis Duboule;Brigid L. M. Hogan;Roel Nusse;Eric N. Olson;M. Rosbash;Gertrud M. Schüpbach;David E. Clapham;Pietro V. De Camilli;R. Huganir;Yuh;J. Nathans;Charles F. Stevens;Joseph S. Takahashi;G. Turrigiano;S. J. Benkovic;Harry B. Gray;Jack Halpern;Michael L. Klein;Raphael D. Levine;T. Mallouk;T. Marks;J. Meinwald;P. Rossky;D. Tirrell;eld;T. Cerling;W. G. Ernst;A. Ravishankara;Alexis T. Bell;James J. Collins;Mark E. Davis;P. Debenedetti;J. Dumesic;Evelyn L. Hu;Rakesh K. Jain;John A. Rogers;J. Seinfeld;D. Futuyma;Daniel L. Hartl;D. M. Hillis;David Jablonski;R. Lenski;Gene E. Robinson;J. Strassmann;Kathryn V. Anderson;John Carlson;Iva S. Greenwald;P. Hanawalt;Mary;D. E. Koshland;R. DeFries;Susan Hanson;Robert L. Coffman;Peter Cresswell;K. C. Garcia;T. W. Mak;P. Marrack;R. Medzhitov;Carl F. Nathan;Lawrence Steinman;Tadatsugu Taniguchi;Arthur Weiss;J. Bennetzen;James C. Carrington;Vicki L. Chandler;B. Staskawicz
  • 通讯作者:
    B. Staskawicz
Local times and supermartingales

Donald Geman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Donald Geman', 18)}}的其他基金

Collaborative Research: SCH: Integrated Analysis of Single-Cell and Spatially Resolved Omics Data
合作研究:SCH:单细胞和空间解析组学数据的综合分析
  • 批准号:
    2124230
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Coarse-to-fine Discovery for Genetic Association
遗传关联的从粗到细的发现
  • 批准号:
    1228248
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Medium: Active Scene Interpretation by Entropy Pursuit
RI:中:熵追踪的活动场景解释
  • 批准号:
    0964416
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
MSPA-MCS: Small-sample Network Inference in Computational Vision and Biology
MSPA-MCS:计算视觉和生物学中的小样本网络推理
  • 批准号:
    0625687
  • 财政年份:
    2006
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
ITR - (ASE+NHS) - (dmc+int): Triage and the Automated Annotation of Large Image Data Sets
ITR - (ASE NHS) - (dmc int):大图像数据集的分类和自动注释
  • 批准号:
    0427223
  • 财政年份:
    2004
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Applications of Stochastic Relaxationand Simulated Annealing to Problems of Inference and Optimization
数学科学:随机松弛和模拟退火在推理和优化问题中的应用
  • 批准号:
    8401927
  • 财政年份:
    1984
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Research in Stochastic Processes and Mathematical Physics
随机过程和数学物理研究
  • 批准号:
    8002940
  • 财政年份:
    1980
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Flows and Random Measures
流量和随机测量
  • 批准号:
    7606599
  • 财政年份:
    1976
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: A Task-Invariant Customization Framework for Lower-Limb Exoskeletons to Assist Volitional Human Motion
职业生涯:用于辅助人类意志运动的下肢外骨骼的任务不变定制框架
  • 批准号:
    2340261
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Invariant Rings, Frobenius, and Differential Operators
不变环、弗罗贝尼乌斯和微分算子
  • 批准号:
    2349623
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Computable model theory and invariant descriptive computability theory
可计算模型理论和不变描述可计算性理论
  • 批准号:
    2348792
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Toward a scale invariant theory for the early Universe and elementary particles
早期宇宙和基本粒子的尺度不变理论
  • 批准号:
    23K03383
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Data-Driven Invariant Sets for Provably Safe Autonomy
协作研究:数据驱动的不变集可证明安全的自治
  • 批准号:
    2303157
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
On a Combinatorial Characterization of Dynamical Invariant Sets of Regulatory Networks
关于调节网络动态不变集的组合表征
  • 批准号:
    23K03240
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
  • 批准号:
    22K13904
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A study of solutions of the Painleve equation derived from monodromy invariant Hermitian forms.
研究从单向不变埃尔米特形式导出的 Painleve 方程的解。
  • 批准号:
    22KJ2518
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Identifying patient invariant parameters for diagnosis using terahertz sensing
使用太赫兹传感识别患者不变参数进行诊断
  • 批准号:
    2869381
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了