MRI: Acquisition of High Performance Compute Cluster for Multivariate Real-time and Whole-brain Correlation Analysis of fMRI Data

MRI:获取高性能计算集群,用于功能磁共振成像数据的多变量实时和全脑相关分析

基本信息

  • 批准号:
    1229597
  • 负责人:
  • 金额:
    $ 52.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

This Major Research Instrumentation award permits Dr. Jonathan Cohen and four co-investigators to purchase a high-performance computing instrumentation (3,584 cores; 2TB/core; 100TB flash storage) to be used by faculty, postdocs, graduate students and undergraduates within the Princeton Neuroscience Institute (PNI). The instrumentation will allow the analysis of human brain imaging data at a speed and scale not previously possible.The collaborating researchers are cognitive neuroscientists and computer scientists at Princeton with complementary expertise in human brain imaging and large scale computing. Two primary research objectives are proposed, building on recent progress in applying multivariate pattern analysis (MVPA) methods from machine learning to detect neural signals that correspond to internal mental states, such as perceptions, memories and intentions that are otherwise not accessible to direct observation. To date, use of MVPA has been restricted to the "offline" analyses" after data have been fully collected. However, a growing and powerful use of brain imaging is to give participants feedback about their brain states in real time, allowing them to use this information to better control brain function (e.g., providing feedback about pain areas as a way of learning to control chronic pain). Such real-time feedback methods could be greatly enhanced by adding MVPA. However, this has been computationally intractable until now. Objective 1 addresses this challenge, by inserting a high performance computing system into the brain scanning pipeline. This will be tested in an experiment that uses MVPA to detect patterns of brain activity associated with sustained attention, allowing us to provide real-time brain-based feedback to improve attentional abilities (with potential educational and health benefits).Objective 2 focuses on another major advance in brain imaging, in which correlations between areas of activity are analyzed, rather than areas of activity in isolation of one another. Such correlations - often referred to as "functional connectivity" - are likely to reveal more about how the brain actually functions, by providing critical information about the interactions between areas. At present, virtually all approaches to functional connectivity focus on the correlations among a limited set of brain areas of interest. However, a more powerful approach would be to examine the correlation of every area with all others. This requires computing the whole-brain correlation matrix. The analysis of such high dimensional data would be further enhanced by applying MVPA to patterns of correlation. However, doing this further increases computational demands. Applying this approach to a routine brain imaging dataset, using currently available instrumentation, would take 880 years to complete. The work under Objective 2 addresses this challenge, by coupling massively parallel computing with sophisticated software optimizations. Doing so can bring previously intractable problems into the range of practicality. These methods will be tested in an experiment that seeks to identify neural representations of intentions, and their influence on brain mechanisms responsible for executing these intentions.
这项主要研究仪器奖允许Jonathan Cohen博士和四名共同研究人员购买高性能计算仪器(3,584核,2TB/核,100TB闪存),供普林斯顿神经科学研究所(PNI)的教师,博士后,研究生和本科生使用。该仪器将允许以前所未有的速度和规模分析人脑成像数据。合作研究人员是普林斯顿大学的认知神经科学家和计算机科学家,他们在人脑成像和大规模计算方面具有互补的专业知识。本文提出了两个主要的研究目标,基于最近在应用机器学习的多元模式分析(MVPA)方法来检测与内部心理状态(如感知、记忆和意图)相对应的神经信号方面的进展,这些神经信号是无法直接观察到的。迄今为止,MVPA的使用仅限于“在数据完全收集之后”的“离线”分析。然而,脑成像的一个日益增长和强大的用途是实时给参与者反馈他们的大脑状态,允许他们使用这些信息来更好地控制大脑功能(例如,提供关于疼痛区域的反馈,作为学习控制慢性疼痛的一种方式)。这种实时反馈方法可以通过加入MVPA得到极大的增强。然而,到目前为止,这在计算上一直很棘手。目标1通过将高性能计算系统插入脑扫描管道来解决这一挑战。这将在一个实验中进行测试,该实验使用MVPA来检测与持续注意力相关的大脑活动模式,使我们能够提供实时的基于大脑的反馈,以提高注意力能力(具有潜在的教育和健康益处)。目标2侧重于脑成像的另一项重大进展,其中分析了活动区域之间的相关性,而不是彼此孤立的活动区域。这种相关性——通常被称为“功能连接”——通过提供有关大脑区域之间相互作用的关键信息,可能会揭示更多关于大脑实际功能的信息。目前,几乎所有的功能连接方法都集中在有限的大脑兴趣区域之间的相关性上。然而,更有效的方法是检查每个区域与所有其他区域的相关性。这需要计算全脑相关矩阵。通过将MVPA应用于相关模式,可以进一步加强对此类高维数据的分析。然而,这样做会进一步增加计算需求。将这种方法应用于常规的脑成像数据集,使用现有的仪器,将需要880年才能完成。目标2下的工作通过将大规模并行计算与复杂的软件优化相结合来解决这一挑战。这样做可以使以前难以解决的问题变得可行。这些方法将在一个实验中进行测试,该实验旨在识别意图的神经表征,以及它们对负责执行这些意图的大脑机制的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Cohen其他文献

In-vitro stimulation of TNF-alpha from human whole blood by cell-free supernatants of gram-positive bacteria.
通过革兰氏阳性菌的无细胞上清液对人全血中的 TNF-α 进行体外刺激。
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    K. Bayston;Mark Tomlinson;Jonathan Cohen
  • 通讯作者:
    Jonathan Cohen
The populist radical right: game changers?
民粹主义激进右翼:游戏规则改变者?
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Cohen;R. Holbert
  • 通讯作者:
    R. Holbert
Unpacking Engagement: Convergence and Divergence in Transportation and Identification
拆箱参与:运输和识别的趋同与分歧
85 – Vasculitis and Other Immunologically Mediated Diseases
85 – 血管炎和其他免疫介导的疾病
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Cohen
  • 通讯作者:
    Jonathan Cohen
CHAPTER TWENTY-SEVEN
第二十七章
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian P. McLaughlin;Jonathan Cohen;Ned Block
  • 通讯作者:
    Ned Block

Jonathan Cohen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Cohen', 18)}}的其他基金

Collaborative Research: HNDS-I:SweetPea: Automating the Implementation and Documentation of Unbiased Experimental Designs
合作研究:HNDS-I:SweetPea:自动化无偏实验设计的实施和记录
  • 批准号:
    2318548
  • 财政年份:
    2023
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
REU Site: Princeton Neuroscience Institute Summer Internship Program
REU 网站:普林斯顿神经科学研究所暑期实习计划
  • 批准号:
    2150171
  • 财政年份:
    2022
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Visual adaptations in hydrothermal vent shrimp and the role in feeding modalities and habitat selection
合作研究:热液喷口虾的视觉适应及其在摄食方式和栖息地选择中的作用
  • 批准号:
    2154146
  • 财政年份:
    2022
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Continuing Grant
NSF Convergence Accelerator - Track D: A Standardized Model Description Format for Accelerating Convergence in Neuroscience, Cognitive Science, Machine Learning and Beyond
NSF 融合加速器 - 轨道 D:用于加速神经科学、认知科学、机器学习等领域融合的标准化模型描述格式
  • 批准号:
    2040682
  • 财政年份:
    2020
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E-MSS: Exact Homological Algebra for Computational Topology
合作研究:CDS
  • 批准号:
    1854748
  • 财政年份:
    2019
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
REU Site: Princeton Neuroscience Institute Summer Internship Program
REU 网站:普林斯顿神经科学研究所暑期实习计划
  • 批准号:
    1757554
  • 财政年份:
    2018
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Continuing Grant
Polar (NSF 15-114): Using Polar Science Data in the Undergraduate Classroom
Polar (NSF 15-114):在本科课堂中使用极地科学数据
  • 批准号:
    1611926
  • 财政年份:
    2016
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
Emotion and Cognition in Moral Judgment
道德判断中的情感和认知
  • 批准号:
    0351996
  • 财政年份:
    2004
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Continuing Grant
ITR: Digital Hammurabi - High Resolution 3D Imaging of Cuneiform Tablets
ITR:数字汉谟拉比 - 楔形文字板的高分辨率 3D 成像
  • 批准号:
    0205586
  • 财政年份:
    2002
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Continuing Grant
Computational and Statistical Methods for Analysis of Neuroimaging Datasets
神经影像数据集分析的计算和统计方法
  • 批准号:
    9418982
  • 财政年份:
    1995
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant

相似海外基金

MRI: Track 1 Acquisition of a High-Performance Computing System at New Mexico Tech
MRI:新墨西哥理工学院高性能计算系统的第一轨道采购
  • 批准号:
    2320162
  • 财政年份:
    2024
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 2 Acquisition of a Novel Performance-Driven 3D Imaging System for Extremely Noisy Objects (NPIX)
设备: MRI:第 2 道采购新型性能驱动的 3D 成像系统,用于极噪物体 (NPIX)
  • 批准号:
    2319708
  • 财政年份:
    2023
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Continuing Grant
Equipment: MRI: Track 2 Acquisition of a High-Performance Computing Cluster for Boosting Artificial Intelligence Enabled Science, Engineering, and Education in South Carolina
设备: MRI:第二轨道收购高性能计算集群,以促进南卡罗来纳州人工智能支持的科学、工程和教育
  • 批准号:
    2320292
  • 财政年份:
    2023
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a High-Performance X-Ray Photoelectron Spectrometer for Research and Training
设备: MRI:轨道 1 采购高性能 X 射线光电子能谱仪用于研究和培训
  • 批准号:
    2320116
  • 财政年份:
    2023
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of Current Hardware to Enhance Computational Research on the ELSA High Performance Computing Cluster at The College of New Jersey
设备: MRI:第一轨道采购当前硬件,以增强新泽西学院 ELSA 高性能计算集群的计算研究
  • 批准号:
    2320244
  • 财政年份:
    2023
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
Equipment: MRI: Track 1 Acquisition of a high-performance computer cluster for computational biology
设备: MRI:轨道 1 获取用于计算生物学的高性能计算机集群
  • 批准号:
    2320846
  • 财政年份:
    2023
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a high-performance computing resource to enhance research and undergraduate education at the College of Staten Island
MRI:收购高性能计算资源以加强史坦顿岛学院的研究和本科教育
  • 批准号:
    2215760
  • 财政年份:
    2022
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High-Performance Computational System for OAK Region to Enable Computing and Data Driven Discovery
MRI:为 OAK 地区采购高性能计算系统,以实现计算和数据驱动的发现
  • 批准号:
    2216084
  • 财政年份:
    2022
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
MRI: Acquisition of High-Performance Computing Cluster for Research in Engineering, Science, and Technology
MRI:收购高性能计算集群用于工程、科学和技术研究
  • 批准号:
    2216335
  • 财政年份:
    2022
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a GPU-based High Performance Computing Instrumentation for Smart City Research at Cleveland State University
MRI:克利夫兰州立大学为智能城市研究采购基于 GPU 的高性能计算仪器
  • 批准号:
    2215388
  • 财政年份:
    2022
  • 资助金额:
    $ 52.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了