Local and Nonlinear Kernel Approximation
局部和非线性核逼近
基本信息
- 批准号:1232409
- 负责人:
- 金额:$ 6.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-01-31 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
HangelbroekDMS-1047694 The goal of this project is to develop new tools andalgorithms for effective kernel approximation on Euclideandomains and certain compact manifolds. This work includes twoimportant aspects. The first is to develop schemes to treathighly nonuniform arrangements of data (with approximation ratescontrolled by a parameter reflecting the local density of thedata). The second is to devise nonlinear schemes thatapproximate using linear combinations of very few kernels. Schemes developed abide by two features of mainstreamapproximation theory (features that have generally been elusivefor kernel-based approximation schemes): they provideapproximation that is precise, by providing convergence ratesdictated by the smoothness of the approximand, and they areuniversal, by treating approximands at all levels of smoothness. The use of kernels to treat scattered, high-dimensional datais, by now, an established methodology in approximation theory. Kernels are especially prized for their ability to approximate inthe absence of underlying geometrical structures, like meshes ortriangulations. At this point there exist several algorithmsemploying kernels to treat large datasets that have been sampledalmost uniformly. However, the approximation power of suchalgorithms -- judged in terms of the fidelity of the approximantto the approximand -- is rarely completely understood. Furthermore, the question of how to treat highly nonuniform data(data with large gaps, or with points that coalesce) usingkernels is only beginning to be addressed. An important goal ofthis project is to develop kernel-based approximation methodsthat approximate from highly unstructured datasets and thatapproximate high-dimensional datasets with little computationaloverhead. Another goal is to acquire a precise understanding ofthe approximation power of such methods. Of particular interestare problems where there is some underlying geometric oralgebraic structure to be exploited, as, for example, is the casein problems in geodesy, crystallography, and molecular biology.
HangelbroekDMS-1047694 该项目的目标是开发新的工具和算法,以在欧几里得域和某些紧流形上进行有效的核逼近。 这项工作包括两个重要方面。 第一个是开发处理高度不均匀的数据排列的方案(由反映数据局部密度的参数控制的近似率)。 第二个是设计非线性方案,使用很少的内核的线性组合来近似。开发的方案遵循主流逼近理论的两个特征(对于基于核的逼近方案通常难以捉摸的特征):它们通过提供由逼近数的平滑度决定的收敛率来提供精确的逼近,并且通过处理所有平滑度级别的逼近数,它们是通用的。 到目前为止,使用核来处理分散的高维数据是逼近论中的一种既定方法。内核因其在缺乏基础几何结构(例如网格或三角剖分)的情况下进行近似的能力而受到特别重视。 目前,存在几种使用内核来处理几乎均匀采样的大型数据集的算法。 然而,这种算法的逼近能力(根据近似值与近似值的保真度来判断)很少被完全理解。此外,如何使用核处理高度不均匀的数据(具有较大间隙或合并点的数据)的问题才刚刚开始得到解决。 该项目的一个重要目标是开发基于内核的近似方法,该方法可以从高度非结构化的数据集进行近似,并且可以以很少的计算开销来近似高维数据集。 另一个目标是准确理解此类方法的近似能力。 特别令人感兴趣的是需要利用一些潜在的几何或代数结构的问题,例如大地测量学、晶体学和分子生物学中的酪蛋白问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hangelbroek其他文献
Kernel multigrid on manifolds
- DOI:
10.1016/j.jco.2024.101900 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Thomas Hangelbroek;Christian Rieger - 通讯作者:
Christian Rieger
Thomas Hangelbroek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Hangelbroek', 18)}}的其他基金
New Directions in Mesh-Free Approximation with Localizable Kernels
具有可本地化内核的无网格近似的新方向
- 批准号:
2010051 - 财政年份:2020
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
Applications of Scalable Bases in Kernel Approximation
可扩展基在核逼近中的应用
- 批准号:
1716927 - 财政年份:2017
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
Kernel approximation with scalable bases
具有可扩展基数的核近似
- 批准号:
1413726 - 财政年份:2014
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
Local and Nonlinear Kernel Approximation
局部和非线性核逼近
- 批准号:
1047694 - 财政年份:2010
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
- 批准号:
EP/X040852/1 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Fellowship
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
- 批准号:
EP/Z000297/1 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Research Grant
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
- 批准号:
2340762 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Continuing Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Standard Grant
Nonlinear Quantum Control Engineering
非线性量子控制工程
- 批准号:
DP240101494 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Discovery Projects
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
- 批准号:
EP/Y004663/2 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Research Grant
CAREER: Effective Hamiltonian Downfolding Methods for Studying Linear and Nonlinear Responses of Quantum Materials
职业:研究量子材料线性和非线性响应的有效哈密顿向下折叠方法
- 批准号:
2338704 - 财政年份:2024
- 资助金额:
$ 6.49万 - 项目类别:
Continuing Grant