Stochastic Modeling and Optimization of Longitudinal Health Care Coordination

纵向医疗保健协调的随机建模和优化

基本信息

项目摘要

This research targets lupus, a prototypic complex disease, and supports care delivery in other contexts. To achieve care based on best practices, lupus requires sophisticated operational planning and scheduling capabilities and sometimes requires infusion-based treatments. A key innovation is to model capacity and provide planning decision support so as to effectively integrate clinical research activities into the clinical care delivery site. Lacking effective planning and appointment scheduling, the inconsistent capture of key disease activity tools degrades the ability to manage a disease like lupus and results in unnecessarily frequent visits to already scarce physicians. Novel operations decision support methodology will be developed to (1) improve access to care (reduced waiting), (2) reduce costly overtime and staff turnover while better utilizing physicians and staff, (3) better support evidence-based medicine, and (4) provide useful decision support for the administration of clinical research studies with clinical care.If successful, key fundamental science and technology innovations will provide longitudinally coordinated health care and better health services research. For lupus, targeted operational systems improvements are known to improve patient health outcomes. The methodology will integrate delivery site planning and appointment scheduling. The former includes decision support for setting the mix of clinical care and clinical research services to be provided and setting the staff size (and composition) and number of rooms. Stochastic process models with integrated optimization algorithms will be created. The research will generate freely available teaching resources for engineers, physicians, researchers, and administrative delivery personnel. The dissemination will also facilitate commercialization. Conduct of the research will support the education and research development of graduate and undergraduate students with attention to underrepresented students.
这项研究的目标是狼疮,一种典型的复杂疾病,并支持在其他情况下的护理提供。为了实现基于最佳实践的护理,狼疮需要复杂的操作计划和调度能力,有时还需要基于输液的治疗。一个关键的创新是建立能力模型并提供规划决策支持,以便有效地将临床研究活动整合到临床护理提供地点。缺乏有效的规划和预约安排,对关键疾病活动工具的不一致捕获降低了管理狼疮等疾病的能力,并导致不必要地频繁拜访本已稀缺的医生。将开发新的运营决策支持方法,以(1)改善获得护理的机会(减少等待),(2)减少昂贵的加班和员工流动,同时更好地利用医生和员工,(3)更好地支持循证医学,以及(4)为临床研究和临床护理的管理提供有用的决策支持。如果成功,关键的基础科学和技术创新将提供纵向协调的卫生保健和更好的卫生服务研究。对于狼疮来说,众所周知,有针对性的操作系统改进可以改善患者的健康结果。该方法将整合交付地点规划和预约安排。前者包括为确定要提供的临床护理和临床研究服务的组合以及确定工作人员规模(和组成)和房间数量提供决策支持。将创建具有集成优化算法的随机过程模型。这项研究将为工程师、医生、研究人员和行政交付人员提供免费的教学资源。传播还将促进商业化。开展这项研究将支持研究生和本科生的教育和研究发展,并关注代表性不足的学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK VAN OYEN其他文献

MARK VAN OYEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK VAN OYEN', 18)}}的其他基金

EAGER: Advanced Capacity Allocation Methodology: Time-sensitive Appointments in Congested Service Systems
EAGER:高级容量分配方法:拥塞服务系统中的时间敏感预约
  • 批准号:
    1548201
  • 财政年份:
    2015
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Hospital Systems Occupancy Prediction and Control to Increase Access, Smooth Provider Workload, and Reduce Cost
医院系统占用预测和控制,以增加访问、平稳提供者工作负载并降低成本
  • 批准号:
    1068638
  • 财政年份:
    2011
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: A Design Methodology for Operational Flexibility
协作研究:操作灵活性的设计方法
  • 批准号:
    0500479
  • 财政年份:
    2005
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: A Design Methodology for Operational Flexibility
协作研究:操作灵活性的设计方法
  • 批准号:
    0542063
  • 财政年份:
    2005
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Collaborative Research: Robust Strategies for Cross-Training Call Center Agents - Taxonomy, Models, and Analysis
协作研究:交叉培训呼叫中心座席的稳健策略 - 分类、模型和分析
  • 批准号:
    0099821
  • 财政年份:
    2001
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Stochastic Scheduling Methods for Queueing Systems
排队系统的随机调度方法
  • 批准号:
    9522795
  • 财政年份:
    1995
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Modeling, Analysis, Optimization, Computation, and Applications of Stochastic Systems
随机系统的建模、分析、优化、计算和应用
  • 批准号:
    2204240
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Stochastic Modeling and Optimization to Support Emergency Response Systems
支持应急响应系统的随机建模和优化
  • 批准号:
    2035086
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
A simulation-based technology for stochastic modeling, sensitivity analysis and design optimization, aimed at development of next-generation micro-fluidic devices for biomedical applications.
一种用于随机建模、灵敏度分析和设计优化的模拟技术,旨在开发用于生物医学应用的下一代微流体设备。
  • 批准号:
    10323474
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
Probabilistic Modeling and Stochastic Optimization for Effective Demand Response Decision Management under Uncertainties in Emerging Smart Energy Markets
新兴智能能源市场不确定性下有效需求响应决策管理的概率建模和随机优化
  • 批准号:
    1938895
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CoPe EAGER: Addressing Human-Centric Decision-Making Challenges from Coastal Hazards via Integrated Geosciences Modeling and Stochastic Optimization
CoPe EAGER:通过综合地球科学建模和随机优化解决沿海灾害带来的以人为本的决策挑战
  • 批准号:
    1940308
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Optimization modeling of coordinated traffic signal control and its stochastic extension: Network modeling approach
协调交通信号控制的优化建模及其随机扩展:网络建模方法
  • 批准号:
    16K18163
  • 财政年份:
    2016
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Modeling evolutionary algorithms for dynamic and stochastic optimization
动态和随机优化的进化算法建模
  • 批准号:
    238777-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic modeling and optimization for call center management
呼叫中心管理的随机建模和优化
  • 批准号:
    416343-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 42万
  • 项目类别:
    Collaborative Research and Development Grants
Modeling evolutionary algorithms for dynamic and stochastic optimization
动态和随机优化的进化算法建模
  • 批准号:
    238777-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic modeling and optimization for call center management
呼叫中心管理的随机建模和优化
  • 批准号:
    416343-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 42万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了