EAGER: Advanced Capacity Allocation Methodology: Time-sensitive Appointments in Congested Service Systems
EAGER:高级容量分配方法:拥塞服务系统中的时间敏感预约
基本信息
- 批准号:1548201
- 负责人:
- 金额:$ 24.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Healthcare and other appointment-based service industries tend to struggle with long waits for service visits. It is increasingly important to model pathways, or itineraries, of patient visits over time from various service providers. Current practice emphasizes the basic first-come-first-served rule when setting appointment dates. This fails to enable appointment setting that gives relatively lesser waits to relatively more urgent patients. This EArly-concept Grant for Exploratory Research (EAGER) project addresses this gap by creating methods that allow organizations to service multiple classes of patient types while offering each the expectation that their waiting time will be close to some target level (with high probability) that is appropriate to the patient's urgency. In settings with service resources shared in common, the methods created will optimize trade-offs involving the utilization of key resource, staff overtime, volumes of services fulfilled, and waiting times for appointments. The potential impact of these new methods includes improved cost control through efficiency, better ability to coordinate a patient's care across providers over time, and improved health outcomes as a result of more timely visits. The work will help broaden participation of underrepresented groups in research and improve the content of engineering courses.The research will address the above challenges surrounding appointment scheduling with emphasis on optimization based planning models for resource allocation. The methods will optimize complex admission control policies for multi-class stochastic queueing network models. Itineraries of care involving multiple visits from multiple service types over time will be treated to increase the value and relevance of the models. The research advances approaches that include mixed integer programming optimization methods that exploit effective linear approximations to model controlled multi-class queueing networks. The approaches will estimate performance metrics such as means, variances, and delay constraint violation probabilities. The methods will optimize the admission control plans over a finite or an infinite time horizon. The approach addresses the above challenges with new methods which can treat realistic problem features that include, but are not limited to (1) the incorporation of historical system data, (2) itinerary flowtime metric models allowing for service bundles and stochastic visit itinerary processes over time, and (3) linear approximations of key performance metrics such as the means and standard deviations of waiting times and delay constraint violation probabilities.
医疗保健和其他预约服务行业往往在漫长的服务就诊等待中苦苦挣扎。对不同服务提供商随时间推移访问患者的路径或路线进行建模变得越来越重要。现行的做法是在厘定预约日期时,强调先到先得的基本原则。这不能实现对相对紧急的患者给予相对较少等待的预约设置。这一早期概念探索性研究拨款(AGERGE)项目通过创建方法来弥补这一差距,这些方法允许组织为多种类型的患者提供服务,同时为每个组织提供预期,即他们的等待时间将接近某个适合患者紧急程度的目标水平(概率很高)。在共享服务资源的情况下,创建的方法将优化关键资源利用率、工作人员加班、完成的服务量和预约等待时间等方面的权衡。这些新方法的潜在影响包括通过提高效率来改善成本控制,更好地协调不同提供者随着时间的推移对患者的护理,以及由于更及时的就诊而改善健康结果。这项工作将有助于扩大代表性不足群体在研究中的参与,并改进工程课程的内容。研究将解决上述围绕预约时间安排的挑战,重点是基于优化的资源分配规划模型。该方法将优化多类随机排队网络模型的复杂接纳控制策略。随着时间的推移,涉及多个服务类型的多次访问的护理行程将被处理,以增加模型的价值和相关性。该研究提出了包括混合整数规划优化方法在内的方法,该方法利用有效的线性近似来建模受控的多类排队网络。这些方法将估计性能度量,例如均值、方差和延迟约束违反概率。这些方法将在有限或无限的时间范围内优化接纳控制计划。该方法通过能够处理现实问题特征的新方法来解决上述挑战,这些特征包括但不限于(1)合并历史系统数据,(2)允许随时间变化的服务包和随机访问行程过程的行程流时间度量模型,以及(3)关键性能度量的线性近似,例如等待时间和延迟约束违反概率的平均值和标准差。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK VAN OYEN其他文献
MARK VAN OYEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK VAN OYEN', 18)}}的其他基金
Stochastic Modeling and Optimization of Longitudinal Health Care Coordination
纵向医疗保健协调的随机建模和优化
- 批准号:
1233095 - 财政年份:2012
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
Hospital Systems Occupancy Prediction and Control to Increase Access, Smooth Provider Workload, and Reduce Cost
医院系统占用预测和控制,以增加访问、平稳提供者工作负载并降低成本
- 批准号:
1068638 - 财政年份:2011
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
Collaborative Research: A Design Methodology for Operational Flexibility
协作研究:操作灵活性的设计方法
- 批准号:
0500479 - 财政年份:2005
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
Collaborative Research: A Design Methodology for Operational Flexibility
协作研究:操作灵活性的设计方法
- 批准号:
0542063 - 财政年份:2005
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
Collaborative Research: Robust Strategies for Cross-Training Call Center Agents - Taxonomy, Models, and Analysis
协作研究:交叉培训呼叫中心座席的稳健策略 - 分类、模型和分析
- 批准号:
0099821 - 财政年份:2001
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
Stochastic Scheduling Methods for Queueing Systems
排队系统的随机调度方法
- 批准号:
9522795 - 财政年份:1995
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
相似国自然基金
面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
- 批准号:61201232
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
LTE-Advanced中继网络关键技术研究
- 批准号:61171096
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
IMT-Advanced协作中继网络中的网络编码研究
- 批准号:61040005
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
面向IMT-Advanced的移动组播关键技术研究
- 批准号:61001071
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
- 批准号:61001116
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced capacity for analysis of nucleic acids in a shared research space
在共享研究空间中进行核酸分析的先进能力
- 批准号:
RTI-2022-00602 - 财政年份:2021
- 资助金额:
$ 24.21万 - 项目类别:
Research Tools and Instruments
OFI SF5 Advanced capacity for autonomous detection of green sea urchin (Strongylocentrotus droebachiensis)
OFI SF5 先进的绿海胆自主检测能力(Strongylocentrotus droebachiensis)
- 批准号:
559820-2020 - 财政年份:2020
- 资助金额:
$ 24.21万 - 项目类别:
Alliance Grants
Building Capacity for Safer Post-disaster Shelter: Leveraging Local Understanding and Advanced Engineering Assessments
建设更安全的灾后避难所的能力:利用当地的理解和先进的工程评估
- 批准号:
1901808 - 财政年份:2019
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
Advanced photosynthesis equipment for enhanced capacity in Nova Scotia's indoor and outdoor agriculture sector.
先进的光合作用设备可增强新斯科舍省室内和室外农业部门的能力。
- 批准号:
539931-2019 - 财政年份:2019
- 资助金额:
$ 24.21万 - 项目类别:
Applied Research Tools and Instruments Grants
Advanced environmental chamber equipment for enhanced capacity in Nova Scotia's agricultural industry
先进的环境室设备可增强新斯科舍省农业产业的能力
- 批准号:
548280-2019 - 财政年份:2019
- 资助金额:
$ 24.21万 - 项目类别:
Applied Research Tools and Instruments Grants
Multi-purpose Collaborative Platform for Enhanced Capacity at NSCC Advanced Manufacturing**Centre
NSCC先进制造**中心增强产能的多用途协作平台
- 批准号:
518040-2017 - 财政年份:2018
- 资助金额:
$ 24.21万 - 项目类别:
Applied Research Tools and Instruments Grants
Advanced analytical plant, soil, and water testing equipment for enhanced capacity in Nova Scotia's soil amendment and bio-stimulant sector
先进的分析植物、土壤和水测试设备,可增强新斯科舍省土壤改良和生物刺激素领域的能力
- 批准号:
533517-2018 - 财政年份:2018
- 资助金额:
$ 24.21万 - 项目类别:
Applied Research Tools and Instruments Grants
Developing Capacity for Advanced Quantitative Methodology by Enhancing Learner Agency
通过增强学习者的能动性来发展高级定量方法的能力
- 批准号:
1939401 - 财政年份:2017
- 资助金额:
$ 24.21万 - 项目类别:
Studentship
QEM Outreach Forum on Building Research and Education Capacity in Advanced Computing, Communications, and Information Systems at HBCUs
QEM 外展论坛,关于建设 HBCU 先进计算、通信和信息系统的研究和教育能力
- 批准号:
1724391 - 财政年份:2017
- 资助金额:
$ 24.21万 - 项目类别:
Standard Grant
Developing capacity in Botswana, Nigeria, South Africa, Tanzania and Zambia in advanced nuclear science and technology techniques.
发展博茨瓦纳、尼日利亚、南非、坦桑尼亚和赞比亚先进核科学技术的能力。
- 批准号:
ST/R002789/1 - 财政年份:2017
- 资助金额:
$ 24.21万 - 项目类别:
Research Grant