Increasing Solar Energy Conversion Efficiency in Hydrogenated Amorphous Silicon Photovoltaic Devices with Plasmonic Perfect Meta-Absorbers
利用等离激元完美超吸收体提高氢化非晶硅光伏器件的太阳能转换效率
基本信息
- 批准号:1235750
- 负责人:
- 金额:$ 29.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Guney, DurduProposal Number: 1235750Institution: Michigan Technological UniversityTitle: Increasing Solar Energy Conversion Efficiency in Hydrogenated Amorphous Silicon Photovoltaic Devices with Plasmonic Perfect Meta-AbsorbersSolar photovoltaic (PV) energy conversion is a technically viable and sustainable solution to society's energy needs, but the costs must be further reduced for widespread adoption. Hydrogenated amorphous silicon (a-Si:H) is an inexpensive and readily available earth abundant solar cell material, which stands to revolutionize our capability for generating clean sustainable energy. PV cells made with a-Si:H have the fastest energy payback time of any commercial PV device and are therefore the most useful for combating climate change. Unfortunately, the light induced degradation of the electronic properties of a-Si:H limits their overall efficiency. This project envisions that the metamaterial paradigm will allow for managing light from the sun for photovoltaic conversion more efficiently than is theoretically possible with traditional optical enhancement. For example, solar light impinging on a metal surface produces waves along the surface when it interacts with the collective oscillations of free electrons in the metal. These surface waves referred to as surface plasmon polaritons, can be exploited to make plasmonic metamaterial ?perfect absorbers? (plasmonic perfect meta-absorbers) to enhance the efficiency of solar PV devices. Perfectmeta-absorbers can be designed with broadband, polarization-independent, and wide-angle optical absorption features. These critical features, lacking in most optical enhancement schemes for solar cell designs, are ideally required to maximize the efficiency of solar cells. Wide-angle reception, for example, is particularly important to increase solar energy conversion efficiency for curved surfaces, and for maximized temporal and spatial response of the panels to solar light.In this project, a plasmonic perfect meta-absorber will be optimized for maximum solar energy conversion efficiency. High conversion efficiency will be derived from polarization-independentoperation over the entire solar spectrum with a wide-angle reception. This absorber will be integrated with a-Si:H PV device and shown how to focus the optical absorption to the desired semiconducting regions to significantly enhance the overall conversion efficiency. Additionally, it will be possible to make ultra-thin solar cells using these absorbers.The optical enhancement will directly reduce the effects of Staebler-Wronski Effect in the cells by allowing their thicknesses to be decreased. This will result in the reduction in the levelized cost of electricity of a-Si:H PV by two means: 1) reduction in initial cost because of higher throughput from thinner i-layers and 2) improved energy conversion efficiency from enhanced light capturing. The concept in this proposal can be also extrapolated to ultra-high efficient/sensitive photodetectors/sensors tunable over THz through UV frequencies. Additionally, this project will provide professional and intellectual training for two graduate students in an academic and industrial collaborative environment.
主要研究者:Guney,Durdu提案编号:1235750机构:密歇根理工大学标题:提高太阳能转换效率的氢化非晶硅光伏器件与等离子体完美元吸收器太阳能光伏(PV)能量转换是一个技术上可行的和可持续的解决方案,社会的能源需求,但成本必须进一步降低广泛采用。氢化非晶硅(a-Si:H)是一种廉价且容易获得的地球丰富的太阳能电池材料,其将彻底改变我们产生清洁可持续能源的能力。用a-Si:H制造的光伏电池具有任何商业光伏器件中最快的能量回收期,因此在应对气候变化方面最有用。不幸的是,a-Si:H的电子性质的光致退化限制了它们的整体效率。该项目设想,超材料范例将允许管理来自太阳的光进行光伏转换,比传统光学增强理论上更有效。例如,太阳光照射在金属表面上,当它与金属中自由电子的集体振荡相互作用时,会沿着表面产生波。这些表面波被称为表面等离子体激元,可以用来制造等离子体超材料?完美的吸收体(等离子体激元完美元吸收器)来提高太阳能PV器件的效率。理想的超吸收体可以被设计成具有宽带、偏振无关和广角光学吸收特征。这些关键特征是太阳能电池设计中大多数光学增强方案所缺乏的,理想情况下需要最大限度地提高太阳能电池的效率。例如,广角接收对于提高曲面的太阳能转换效率以及最大化面板对太阳光的时间和空间响应尤为重要。在该项目中,将优化等离子体完美元吸收器以实现最大太阳能转换效率。高转换效率将来自于在整个太阳光谱范围内与偏振无关的操作,并具有广角接收。该吸收体将与a-Si:H PV器件集成,并展示了如何将光吸收集中到所需的半导体区域,以显着提高整体转换效率。 此外,利用这些吸收体还可以制造超薄太阳能电池,通过减小电池厚度,光学增强将直接降低电池中的Staebler-Wronski效应。这将通过两种方式降低a-Si:H PV的平准化电力成本:1)由于来自较薄i层的较高产量而降低初始成本,以及2)由于增强的光捕获而提高能量转换效率。该提案中的概念也可以外推到在THz至UV频率范围内可调谐的超高效率/灵敏光电探测器/传感器。此外,该项目将在学术和工业合作环境中为两名研究生提供专业和智力培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Durdu Guney其他文献
Durdu Guney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Durdu Guney', 18)}}的其他基金
Metamaterials: Making Optics from Scratch--Part 1
超材料:从头开始制造光学器件 - 第 1 部分
- 批准号:
1202443 - 财政年份:2012
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
相似国自然基金
基于“夸父一号”HXI载荷和Solar Orbiter /STIX的耀斑X射线暴多视角观测及研究
- 批准号:12303063
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
End-to-End Solar Borehole Business Models and Data Collection to Extend Sustainable Access to Energy and Water in Rural Tanzania
端到端太阳能钻孔商业模式和数据收集,以扩大坦桑尼亚农村地区可持续获取能源和水的机会
- 批准号:
10074210 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Collaborative R&D
Global Governing Gaps and Accountability Traps for Solar Energy and Storage
太阳能和存储的全球治理差距和问责陷阱
- 批准号:
DP230103043 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Discovery Projects
SBIR Phase II: Increasing energy yield from dusty solar panels with a new generation of an electrostatic self-cleaning technology
SBIR 第二阶段:利用新一代静电自清洁技术提高多尘太阳能电池板的能源产量
- 批准号:
2322204 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Cooperative Agreement
Three-dimensional solar-energy-driven hydrogen generation from ammonia
三维太阳能驱动的氨制氢
- 批准号:
DP240102787 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Discovery Projects
Circular clean energy regulation to solve the PV solar waste crisis
循环清洁能源监管解决光伏太阳能废弃物危机
- 批准号:
DE240100531 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Discovery Early Career Researcher Award
Solar energy materials in action: real-time molecular movies of pyroelectric switching by time-resolved X-ray diffraction
太阳能材料的实际应用:通过时间分辨 X 射线衍射拍摄热释电开关的实时分子电影
- 批准号:
2901373 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Studentship
Oxide Perovskites for Thermally Enhanced Solar Energy Conversion
用于热增强太阳能转换的氧化物钙钛矿
- 批准号:
EP/Y027647/1 - 财政年份:2024
- 资助金额:
$ 29.96万 - 项目类别:
Fellowship
Improving Access and Outcomes for Students in Semiconductors and Solar Energy
改善半导体和太阳能专业学生的入学机会和成果
- 批准号:
2325694 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
ERI: CAS- Climate: Design for Recyclability: Perovskite Solar Technology for Sustainable Energy Future
ERI:CAS-气候:可回收性设计:钙钛矿太阳能技术促进可持续能源的未来
- 批准号:
2350521 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Energy interface engineering for self-sustaining solar thermal distillation system: Enhancement of atmospheric cooling using microstructured surface layers
自持太阳能热蒸馏系统的能量界面工程:利用微结构表面层增强大气冷却
- 批准号:
23K04652 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




