Bridging Particle-Resolved and Point-Particle Based Simulation for Turbulent Particle-Laden Flow Using New Heterogeneous High-Performance Computer

使用新型异构高性能计算机桥接粒子解析和基于点粒子的湍流粒子负载流模拟

基本信息

  • 批准号:
    1235974
  • 负责人:
  • 金额:
    $ 35.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2017-11-30
  • 项目状态:
    已结题

项目摘要

1235974PI: WangTurbulent flows laden with solid particles, small droplets, and gas microbubbles are ubiquitous in engineering, biological and environmental applications. In these applications, particles are usually suspended in a turbulent carrier fluid. The interactions between the dispersed phase and the carrier fluid phase impact the dynamics of suspended particles (e.g., dispersion, deposition rate, collision rate, settling velocity) and the bulk properties of the multiphase flow (e.g., wall or surface drag, turbulence intensity). Understanding turbulent particle-laden flows can help improve engineering devices such as coal combustors and better predict natural phenomena such as warm rain and hurricane. In the last 20 years, computational methods have been developed to address these complex multiscale flows, primarily using the point-particle based simulations where the effect of finite particle sizes has been ignored. However, in many applications where the particle size overlaps with turbulent flow scales, a better approach known as particle-resolved simulations is necessary to fully address the coupling between the dispersed phase and the fluid phase. The overall goal of this research is to develop an efficient particle-resolved simulation approach to study a range of important physical issues from the particle size and flow dissipation scales to coarse-grained system scales. The study will make use of the mesoscopic lattice Boltzmann approach to efficiently map its data locality and algorithmic scalability to heterogeneous PetaScale computers equipped with both multicore CPUs and high-performance GPUs. The flexibility of the lattice Boltzmann algorithm in treating interfacial interaction between the phases will be exploited. Several benchmark cases will be simulated to validate the approach and the codes. The effects of particle size, particle-to-fluid density ratio, volume fraction, and gravity on the interaction dynamics of both phases will be systematically studied. These codes will then be ported to different high-performance computers to achieve a consistent sustained scalability. Through extended collaborations, the approach will be used to address particle-rough wall impact dynamics in industrial devices and surface drag modulation by sea sprays in marine atmospheric boundary layer. The developed codes will be converted to public-domain software to allow others to use the approach for many other engineering, biological and environmental applications. The computational tool can potentially be used to address many applications involving moving objects in a turbulent carrier flow, such as fluidized bed, sediment transport, sea sprays, and warm rain development. The research will help move the computation of complex turbulent multiphase flow to the mainstream high-performance, GPU-accelerated, multicore heterogeneous computers. These capabilities will impact future research directions in both turbulent multiphase flows and parallel computation. The project provides an interdisciplinary training and mentoring ground for one graduate student, one postdoc, and two early-career collaborators. The project will contribute to a new multidisciplinary graduate certificate program in Computational Science and Engineering at the University of Delaware, which could impact a few dozens of students each year.
1235974 PI:在工程、生物和环境等领域,充满固体颗粒、小液滴和气体微泡的湍流流动是普遍存在的。在这些应用中,颗粒通常悬浮在湍流载体流体中。分散相和载体流体相之间的相互作用影响悬浮颗粒的动力学(例如,分散、沉积速率、碰撞速率、沉降速度)和多相流的整体性质(例如,壁或表面阻力、湍流强度)。了解湍流颗粒流可以帮助改进工程设备,如煤燃烧器,并更好地预测自然现象,如暖雨和飓风。 在过去的20年中,计算方法已经开发出来,以解决这些复杂的多尺度流,主要使用基于点粒子的模拟,其中有限的颗粒尺寸的影响被忽略。然而,在许多应用中,颗粒尺寸与湍流尺度重叠,需要一种更好的方法,称为颗粒分辨模拟,以充分解决分散相和流体相之间的耦合。本研究的总体目标是开发一种有效的粒子分辨模拟方法,以研究一系列重要的物理问题,从颗粒尺寸和流动耗散尺度到粗粒度系统尺度。该研究将利用介观晶格玻尔兹曼方法,将其数据局部性和算法可扩展性有效地映射到配备多核CPU和高性能GPU的异构PetaScale计算机。将利用格子玻尔兹曼算法在处理相之间的界面相互作用的灵活性。几个基准情况下,将模拟验证的方法和代码。将系统地研究颗粒尺寸、颗粒与流体密度比、体积分数和重力对两相相互作用动力学的影响。然后,这些代码将被移植到不同的高性能计算机上,以实现一致的可持续扩展性。通过扩展合作,该方法将用于解决工业设备中的颗粒粗糙壁冲击动力学和海洋大气边界层中的海雾对表面阻力的调制。 开发的代码将被转换为公共领域的软件,以允许其他人将该方法用于许多其他工程,生物和环境应用。该计算工具可用于解决许多涉及湍流载体流中移动物体的应用,如流化床、沉积物输送、海雾和暖雨发展。该研究将有助于将复杂湍流多相流的计算转移到主流的高性能、GPU加速的多核异构计算机上。这些能力将影响未来的研究方向在湍流多相流和并行计算。该项目为一名研究生,一名博士后和两名早期职业合作者提供了跨学科的培训和指导。该项目将为特拉华州大学的计算科学与工程新的多学科研究生证书课程做出贡献,该课程每年可能会影响几十名学生。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct numerical simulation of turbulent pipe flow using the lattice Boltzmann method
  • DOI:
    10.1016/j.jcp.2017.11.040
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheng Peng;N. Geneva;Zhaoli Guo;Lian-Ping Wang
  • 通讯作者:
    Cheng Peng;N. Geneva;Zhaoli Guo;Lian-Ping Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lian-Ping Wang其他文献

Influence of particle-fluid density ratio on the dynamics of finite size particle in homogeneous isotropic turbulent flows
  • DOI:
    doi.org/10.1103/PhysRevE.104.025109
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Jie Shen;Zhiming Lu;Lian-Ping Wang;Cheng Peng
  • 通讯作者:
    Cheng Peng
Direct numerical simulation of sediment transport in turbulent open channel flows using the lattice Boltzmann method
  • DOI:
    doi.org/10.3390/fluids6060217
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Liangquan Hu;Zhiqiang Dong;Cheng Peng;Lian-Ping Wang
  • 通讯作者:
    Lian-Ping Wang
Near-wall flow structures and related surface quantities in wall-bounded turbulence
壁界湍流中的近壁流动结构和相关表面量
  • DOI:
    10.1063/5.0051649
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Tao Chen;Tianshu Liu;Zhi-Qiang Dong;Lian-Ping Wang;Shiyi Chen
  • 通讯作者:
    Shiyi Chen
Nano-engineered pathways for advanced thermal energy storage systems
用于先进热能存储系统的纳米工程通道
  • DOI:
    10.1016/j.xcrp.2022.101007
  • 发表时间:
    2022-08-17
  • 期刊:
  • 影响因子:
    7.300
  • 作者:
    Avinash Alagumalai;Liu Yang;Yulong Ding;Jeffrey S. Marshall;Mehrdad Mesgarpour;Somchai Wongwises;Mohammad Mehdi Rashidi;Robert A. Taylor;Omid Mahian;Mikhail Sheremet;Lian-Ping Wang;Christos N. Markides
  • 通讯作者:
    Christos N. Markides
A mass-conserving, positive-definite, and low-dissipation approach for solving the population balance equation
一种用于求解颗粒群平衡方程的质量守恒、正定且低耗散的方法
  • DOI:
    10.1016/j.powtec.2025.121114
  • 发表时间:
    2025-10-01
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Zhuang-Zhuang Tian;Lian-Ping Wang
  • 通讯作者:
    Lian-Ping Wang

Lian-Ping Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lian-Ping Wang', 18)}}的其他基金

Multiscale plenoptic imaging and direct computation of turbulent channel flows laden with finite-size solid particles
含有有限尺寸固体颗粒的湍流通道流的多尺度全光成像和直接计算
  • 批准号:
    1706130
  • 财政年份:
    2017
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Models and Observations to Assess Effects of Turbulence on Warm Rain Initiation
合作研究:整合模型和观测来评估湍流对暖雨产生的影响
  • 批准号:
    1139743
  • 财政年份:
    2012
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Theoretical and Experimental Study of Transport and Retention of Nanoparticles through Subsurface Porous Media
纳米颗粒通过地下多孔介质传输和保留的理论和实验研究
  • 批准号:
    0932686
  • 财政年份:
    2009
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: PetaApps: Enabling Multiscale Modeling of Turbulent Clouds on Petascale Computers
合作研究:PetaApps:在千万亿级计算机上实现湍流云的多尺度建模
  • 批准号:
    0904534
  • 财政年份:
    2009
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Turbulence Enhanced Droplet Growth by Collision-Coalescence
合作研究:通过碰撞聚结湍流增强液滴生长
  • 批准号:
    0730766
  • 财政年份:
    2007
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Continuing Grant
Turbulent Collision-Coalescence of Cloud Droplets and its Impact on Warm Rain Formation
云滴的湍流碰撞聚结及其对暖雨形成的影响
  • 批准号:
    0527140
  • 财政年份:
    2005
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Continuing Grant
Effects of Turbulence on the Collision-Coalescence Growth of Cloud Droplets
湍流对云滴碰撞聚结生长的影响
  • 批准号:
    0114100
  • 财政年份:
    2001
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
  • 批准号:
    11905220
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
  • 批准号:
    21902147
  • 批准年份:
    2019
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
  • 批准号:
    30560052
  • 批准年份:
    2005
  • 资助金额:
    20.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Investigation of spatio-temporal characteristics of triple elliptical nozzles using time-resolved tomographic particle image velocimetry
利用时间分辨断层粒子图像测速技术研究三椭圆形喷嘴的时空特性
  • 批准号:
    547831-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Investigation of Asymmetric Free and Confined Three-dimensional Turbulent Jets using Time-Resolved Tomographic Particle Image Velocimetry
使用时间分辨断层粒子图像测速研究不对称自由和受限三维湍流射流
  • 批准号:
    RGPIN-2017-04957
  • 财政年份:
    2022
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of Asymmetric Free and Confined Three-dimensional Turbulent Jets using Time-Resolved Tomographic Particle Image Velocimetry
使用时间分辨断层粒子图像测速研究不对称自由和受限三维湍流射流
  • 批准号:
    RGPIN-2017-04957
  • 财政年份:
    2021
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of spatio-temporal characteristics of triple elliptical nozzles using time-resolved tomographic particle image velocimetry
利用时间分辨断层粒子图像测速技术研究三椭圆形喷嘴的时空特性
  • 批准号:
    547831-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Investigation of Asymmetric Free and Confined Three-dimensional Turbulent Jets using Time-Resolved Tomographic Particle Image Velocimetry
使用时间分辨断层粒子图像测速研究不对称自由和受限三维湍流射流
  • 批准号:
    RGPIN-2017-04957
  • 财政年份:
    2020
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental Study of Submerged Turbulent Jets Using Time Resolved Particle Image Velocimetry
利用时间分辨粒子图像测速技术进行水下湍流射流实验研究
  • 批准号:
    550795-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 35.99万
  • 项目类别:
    University Undergraduate Student Research Awards
Time-resolved tomographic particle image velocimetry (PIV) system
时间分辨断层扫描粒子图像测速 (PIV) 系统
  • 批准号:
    RTI-2021-00385
  • 财政年份:
    2020
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Research Tools and Instruments
EAGER: Exploring the Ground-Level and Elevated Sources of New Particle Formation Using Aerosol Size- and Hygroscopicity-Resolved Turbulent Flux Measurement Technique
EAGER:利用气溶胶尺寸和吸湿性分辨湍流测量技术探索新颗粒形成的地面和高架来源
  • 批准号:
    1946340
  • 财政年份:
    2019
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Standard Grant
Analysis of the transition process around laminar separation bubbles (LSB‘s) in a towing tank using time-resolved 3D particle tracking techniques
使用时间分辨 3D 粒子跟踪技术分析拖曳池中层流分离气泡 (LSBâs) 周围的转变过程
  • 批准号:
    422177304
  • 财政年份:
    2019
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Research Grants
Investigation of Asymmetric Free and Confined Three-dimensional Turbulent Jets using Time-Resolved Tomographic Particle Image Velocimetry
使用时间分辨断层粒子图像测速研究不对称自由和受限三维湍流射流
  • 批准号:
    RGPIN-2017-04957
  • 财政年份:
    2019
  • 资助金额:
    $ 35.99万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了