Hierarchical Adaptive Variable Fidelity Approach for Incompressible Wall-Bounded Turbulent Flow Simulations
不可压缩壁界湍流模拟的分层自适应可变保真度方法
基本信息
- 批准号:1236505
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1236505VasilyevLatest advancements in wavelet-based numerical methodologies for the solution of partial differential equations, combined with the unique properties of wavelet analysis to unambiguously identify and isolate localized dynamically dominant flow structures, make it feasible to propose development of intelligent methods for turbulent flow simulation that tightly integrate numerics and physicsbased modeling. The overall goal of the research is to develop a robust and computationally efficient predictive computational approach, capable of performing variable fidelity numerical simulation of transitional and turbulent incompressible flows for different flow conditions including turbulent flow separation, turbulent boundary layers, shear layers, and jets. Spatially variable wavelet thresholding strategy will be used for model form adaptation. The wavelet threshold will evolve in space and time using feedback control to guarantee that only a priori specified fraction of turbulent kinetic energy or turbulence dissipation rate is resolved. With such a strategy the transition between adaptive Wavelet-based Direct Numerical Simulation (WDNS), the Coherent Vortex Simulation (CVS), the Stochastic Coherent Adaptive Large Eddy Simulation (SCALES), and adaptive Wavelet-based Unsteady Reynolds Averaged Navier-Stokes (WURANS) simulations regimes is natural: the WURANS models switch to subgrid scale model for SCALES to no model for CVS and WDNS approaches as the percentage of the resolved turbulent kinetic energy or resolved turbulence dissipation rate increases from 0% to 100%. This will form a basis for the proposed new physics-based integration of WDNS, CVS, SCALES, and WURANS methodologies. The strength of the proposed methodology is that all models (WDNS, CVS, SCALES, WURANS) use the same wavelet based adaptation strategy to resolve and tracks the energy-containing eddies on the adaptive computational mesh. The approach will be further enhanced by integrating it with Brinkman penalization to enforce solid boundaries of arbitrary complexity. A unique advantage of combining the proposed approach with Brinkman penalization is the ability to enforce boundary conditions to a specified precision without a significant computational overhead. The proposed hierarchical variable fidelity approach will be extensively validated for a number of benchmark problems such as turbulent channel flow, turbulent flow over backward facing step, turbulent flow in a planar asymmetric diffuser, and turbulent flow past circular and square cylinders. The algorithms developed herein specifically address problems of efficient and affordable numerical simulations of turbulent flows, when classical methods have failed to yield progress in reliable predictive modeling. The research will push the envelope of computational capabilities of modeling multi-scale physics of high Reynolds number turbulent flows and will make possible the simulations of high Reynolds number turbulent flows, which currently are difficult or impossible to solve using conventional numerical algorithms. It is expected that the research will provide insight into the complex multi-scale physics of turbulent flows, improve our understanding of fluid turbulence, and even provide engineers with a vital design tool that completely eliminates the onerous overhead of current grid generation methods. An additional aim of this project is in education and dissemination of the newly developed approach and in distribution of the software tools to be developed as a part of the project for the wide use by the scientific community including government laboratories. The new integrated eddy capturing approach has potentially revolutionary impact on all technological endeavors in which turbulent flow plays an important role. Aeronautics, propulsion, transportation and energy are just a few potential areas for this. The range of other applications in free-surface flows, MHD, and nonlinear PDEs in general is tremendous. High resolution results generated as a part of this project are expected to be broadly used by the scientific community.
1236505 vasilyev基于小波的偏微分方程数值解法的最新进展,结合小波分析明确识别和分离局部动态优势流结构的独特特性,使得提出将数值和基于物理的建模紧密结合的湍流模拟智能方法成为可能。该研究的总体目标是开发一种鲁棒且计算效率高的预测计算方法,能够对不同流动条件下的过渡和湍流不可压缩流动进行变保真度的数值模拟,包括湍流分离、湍流边界层、剪切层和射流。采用空间可变小波阈值策略进行模型形态自适应。小波阈值利用反馈控制在空间和时间上演化,以保证只有先验指定的湍流动能或湍流耗散率被分解。有了这样的策略,基于小波的自适应直接数值模拟(WDNS)、相干涡模拟(CVS)、随机相干自适应大涡模拟(SCALES)和基于小波的自适应非定常雷诺平均纳维-斯托克斯(WURANS)模拟机制之间的过渡是自然的:当解决的湍流动能百分比或解决的湍流耗散率从0%增加到100%时,对于scale方法,WURANS模型从亚网格尺度模型切换到CVS和WDNS方法的无模型。这将为提出的新的基于物理的WDNS、CVS、SCALES和WURANS方法集成奠定基础。该方法的优点在于,所有模型(WDNS、CVS、SCALES、WURANS)都使用相同的基于小波的自适应策略来解析和跟踪自适应计算网格上的含能量涡流。该方法将通过与Brinkman惩罚相结合来进一步增强,以强制执行任意复杂性的固体边界。将所提出的方法与Brinkman惩罚相结合的一个独特优点是能够在没有显著计算开销的情况下将边界条件强制执行到指定的精度。所提出的分层可变保真度方法将在许多基准问题中得到广泛验证,例如湍流通道流动,后面向台阶的湍流,平面非对称扩散器中的湍流以及经过圆形和方形圆柱体的湍流。本文开发的算法专门解决了当经典方法未能在可靠的预测建模方面取得进展时,高效和负担得起的湍流数值模拟问题。该研究将推动高雷诺数湍流多尺度物理建模的计算能力,并将使高雷诺数湍流的模拟成为可能,目前使用传统的数值算法很难或不可能解决。预计该研究将为湍流的复杂多尺度物理提供见解,提高我们对流体湍流的理解,甚至为工程师提供一个重要的设计工具,完全消除当前网格生成方法的繁重开销。该项目的另一个目的是教育和传播新开发的方法,并分发作为该项目的一部分将开发的软件工具,供科学界包括政府实验室广泛使用。新的综合涡流捕获方法对湍流扮演重要角色的所有技术努力具有潜在的革命性影响。航空、推进、运输和能源只是几个潜在的领域。在自由表面流动、MHD和非线性偏微分方程中的其他应用范围是巨大的。作为该项目的一部分产生的高分辨率结果有望被科学界广泛使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oleg Vasilyev其他文献
On scale-free and poly-scale behaviors of random hierarchical networks
关于随机分层网络的无标度和多尺度行为
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
V. Avetisov;A. Chertovich;Sergei Nechaev;Sergei Nechaev;Oleg Vasilyev;Oleg Vasilyev - 通讯作者:
Oleg Vasilyev
Oleg Vasilyev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oleg Vasilyev', 18)}}的其他基金
Integrated Variable Fidelity Eddy Capturing Approach for Turbulent Flow Simulations
用于湍流模拟的集成可变保真度涡流捕获方法
- 批准号:
0756046 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
U.S.-Switzerland Doctoral Dissertation Enhancement Project: An Adaptive Mesoscale Eddy Capturing Approach
美国-瑞士博士论文增强项目:自适应中尺度涡流捕获方法
- 批准号:
0837948 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CMG: Wavelet-Based Unified Approach for Physical Feature Extraction, Large-Scale Visualization, and Modeling of Multiscale Geological Processes
合作研究:CMG:基于小波的物理特征提取、大规模可视化和多尺度地质过程建模的统一方法
- 批准号:
0327269 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Dynamically Adaptive Wavelet-Based Algorithms for Numerical Simulations of Complex Multi-Scale Phenomena
职业:用于复杂多尺度现象数值模拟的动态自适应小波算法
- 批准号:
0242457 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Application of Wavelets in Modelling and Visualizing Multiscale Phenomena in Geophysics
合作研究:小波在地球物理多尺度现象建模和可视化中的应用
- 批准号:
0242591 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Dynamically Adaptive Wavelet-Based Algorithms for Numerical Simulations of Complex Multi-Scale Phenomena
职业:用于复杂多尺度现象数值模拟的动态自适应小波算法
- 批准号:
0132664 - 财政年份:2002
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: Application of Wavelets in Modelling and Visualizing Multiscale Phenomena in Geophysics
合作研究:小波在地球物理多尺度现象建模和可视化中的应用
- 批准号:
0107086 - 财政年份:2001
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Investigating Adaptive Strategies in Variable Environments
合作研究:研究可变环境中的适应性策略
- 批准号:
2120535 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Adaptive Strategies in Variable Environments
合作研究:研究可变环境中的适应性策略
- 批准号:
2120534 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Real-Time Environment Adaptability of Adaptive Arawler Robot with Variable Compliance
可变顺应性自适应抓取机器人的实时环境适应性
- 批准号:
20K04369 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Adaptive and parallel algorithms for solving partialdifferential equations with variable coefficients on sparse grids
求解稀疏网格上变系数偏微分方程的自适应并行算法
- 批准号:
418669609 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Research Grants
Collaborative Research: Adaptive Building Enclosure Systems Using Cellular Solid-Solid Phase Change Materials with Variable Transparency
合作研究:使用具有可变透明度的细胞固-固相变材料的自适应建筑围护系统
- 批准号:
1662675 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Adaptive Building Enclosure Systems Using Cellular Solid-Solid Phase Change Materials with Variable Transparency
合作研究:使用具有可变透明度的细胞固-固相变材料的自适应建筑围护系统
- 批准号:
1662903 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Autonomous and adaptive operation mechanism of variable structured microgrid
变结构微电网自主自适应运行机制
- 批准号:
16K00292 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fully adaptive and integrated numerical methods for the simulation and control of variable density multiphase flows governed by diffuse interface models.
用于模拟和控制由扩散界面模型控制的变密度多相流的完全自适应和集成数值方法。
- 批准号:
238092916 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Priority Programmes
Nonlinear Adaptive Control of Doubly-fed Induction Generator for Variable Speed Wind Turbine
变速风力机双馈感应发电机非线性自适应控制
- 批准号:
EP/J014249/1 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Influence of mating system and variable selection on adaptive variation within and across species of cannibalistic black widow spiders
交配系统和变量选择对食人黑寡妇蜘蛛物种内和物种间适应性变异的影响
- 批准号:
229029-2007 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual