Investigating the Mechanistic Basis and Adaptive Significance of the Coordination of Plant Growth by External and Internal Cues
研究内外线索协调植物生长的机制基础和适应性意义
基本信息
- 批准号:1238040
- 负责人:
- 金额:$ 153.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Stacey Harmer (University of California-Davis)Co-PI: Ben Blackman (University of Virginia)Plants optimize their use of local resources by synchronizing their growth with day/night cycles, resulting in daily rhythms in leaf, stem, and root growth. This coordination is accomplished through an intricate interplay between the light signaling, circadian clock, and hormone signaling networks. However, the manner in which these networks interact to control plant growth is poorly understood. This project exploits the robust ability of sunflower to track the sun to characterize pathways that coordinate plant growth with daily environmental fluctuations. First, developmental and environmental factors that control solar tracking will be defined. Next, high-throughput analysis of hormone and gene transcript levels in different portions of solar tracking stems will be carried out, allowing the identification of candidate genes and pathways controlling these growth rhythms. Finally, genome-enabled association and linkage mapping techniques will take advantage of the abundant natural variation present in common sunflower and its wild relatives to provide essential information about the role of solar tracking in plant adaptation to the environment. Together, these studies will elucidate the interactions between diverse signaling networks that optimize plant growth with environmental changes and provide insights into ways to improve plant performance.Plant yield is enhanced by daily growth patterns of stems and leaves that allow more efficient photosynthesis and higher water use efficiency. Although a number of molecular pathways that regulate plant growth have been identified, an understanding of how they are coordinated with each other and with environmental cues remains elusive. Solar tracking in sunflower is an extremely appropriate trait for addressing these basic questions since it provides a unique entry point to determine how internal and external cues regulate growth across a single organ. By asking fundamental questions about how this coordination occurs and evolves, these studies will reveal important insights into how to enhance crop plant performance and conserve plant diversity in the face of global climate change and an increasing human population. In addition, this project will generate extensive resources that will be useful to the entire Compositae community. To provide public access to these resources, transcriptome and functionally annotated marker data will be deposited in public databases including the NCBI Short Read Archive (http://www.ncbi.nlm.nih.gov/sra/), the Compositae Genome Project (http://compgenomics.ucdavis.edu/), the Sunflower Genome Resources Consortium (http://www.sunflowergenome.org), and DRYAD (http://datadryad.org/). Germplasm will be deposited with the National Plant Germplasm System (http://www.ars-grin.gov/npgs/). A student crowd-sourcing method will be developed for the analysis of time-lapse videos of plants grown in natural and controlled environments. This image analysis software developed with the iPlant Collaborative will be made freely available via the iPlant Phytobisque web portal (https://pods.iplantcollaborative.org/wiki/display/ipg2p/PhytoBisque). Finally, cross-disciplinary training in genomic, ecological, and quantitative approaches will be provided for the undergraduate and graduate students and post-doctoral fellows involved in these studies.
Pi:Stacey Harmer(加州大学戴维斯分校)Co-Pi:Ben Blackman(弗吉尼亚大学)植物通过使其生长与昼夜周期同步来优化其对当地资源的利用,导致叶、茎和根生长的每日节律。这种协调是通过光信号、生物钟和激素信号网络之间复杂的相互作用来完成的。然而,人们对这些网络相互作用控制植物生长的方式知之甚少。该项目利用向日葵跟踪太阳的强大能力来表征植物生长与日常环境波动相协调的路径。首先,将定义控制太阳跟踪的发展和环境因素。接下来,将对太阳跟踪茎不同部分的激素和基因转录水平进行高通量分析,从而识别控制这些生长节律的候选基因和途径。最后,基因组关联和连锁作图技术将利用向日葵及其野生近亲丰富的自然变异,提供有关太阳跟踪在植物适应环境中所起作用的重要信息。总之,这些研究将阐明随着环境变化而优化植物生长的不同信号网络之间的相互作用,并为改善植物表现的方法提供见解。植物产量通过茎和叶的日常生长模式来提高,从而允许更有效的光合作用和更高的水分利用效率。尽管已经确定了许多调控植物生长的分子途径,但对它们如何相互协调以及与环境线索协调的理解仍然难以捉摸。向日葵的太阳跟踪是解决这些基本问题的一个非常合适的特征,因为它提供了一个独特的切入点来确定内部和外部信号如何调节单个器官的生长。通过提出关于这种协调是如何发生和演变的基本问题,这些研究将揭示如何在全球气候变化和人口增加的情况下提高作物生长性能和保护植物多样性的重要见解。此外,这个项目将产生对整个菊科社区有用的广泛资源。为了提供对这些资源的公共访问,转录组和功能注释的标记数据将被存储在公共数据库中,包括NCBI短读档案(http://www.ncbi.nlm.nih.gov/sra/),)、菊科基因组项目(http://compgenomics.ucdavis.edu/),)、向日葵基因组资源联盟(http://www.sunflowergenome.org),和Dryad(http://datadryad.org/).种质将保存在国家植物种质系统(http://www.ars-grin.gov/npgs/).)中将开发一种学生众包方法,用于分析在自然和受控环境中生长的植物的延时视频。与iPLANT协作开发的这个图像分析软件将通过iPLANT植物性网站门户网站(https://pods.iplantcollaborative.org/wiki/display/ipg2p/PhytoBisque).免费提供最后,将为参与这些研究的本科生、研究生和博士后研究员提供基因组学、生态学和量化方法方面的跨学科培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stacey Harmer其他文献
Stacey Harmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stacey Harmer', 18)}}的其他基金
Regulation of pre-mRNA splicing by the circadian system
昼夜节律系统对前体 mRNA 剪接的调节
- 批准号:
2309854 - 财政年份:2023
- 资助金额:
$ 153.38万 - 项目类别:
Standard Grant
RESEARCH-PGR: Investigating how internal and external cues coordinate floral organ development and the consequences for plant reproduction
研究-PGR:研究内部和外部线索如何协调花器官发育以及对植物繁殖的影响
- 批准号:
1759942 - 财政年份:2018
- 资助金额:
$ 153.38万 - 项目类别:
Continuing Grant
Circadian Regulation of Auxin Signal Transduction
生长素信号转导的昼夜节律调节
- 批准号:
0616179 - 财政年份:2006
- 资助金额:
$ 153.38万 - 项目类别:
Standard Grant
相似海外基金
The mechanistic basis of slow-fast phenotypic diversity and its functional and evolutionary significance in social groups
慢-快表型多样性的机制基础及其在社会群体中的功能和进化意义
- 批准号:
2241230 - 财政年份:2024
- 资助金额:
$ 153.38万 - 项目类别:
Standard Grant
Investigating the mechanistic basis of photon FLASH radiotherapy in tumours & normal tissues
研究光子闪光放射治疗肿瘤的机制基础
- 批准号:
MR/Y012097/1 - 财政年份:2024
- 资助金额:
$ 153.38万 - 项目类别:
Research Grant
Integrating deep phenotyping and functional genomics to understand the mechanistic basis of primary lymphatic anomalies
整合深层表型分析和功能基因组学,了解原发性淋巴异常的机制基础
- 批准号:
MR/Y013786/1 - 财政年份:2024
- 资助金额:
$ 153.38万 - 项目类别:
Research Grant
Mechanistic Basis for ERK in driving KRAS-dependent pancreatic cancer
ERK 驱动 KRAS 依赖性胰腺癌的机制基础
- 批准号:
10739653 - 财政年份:2023
- 资助金额:
$ 153.38万 - 项目类别:
Mechanistic Basis for Non-Canonical Translation in Neurological Disease
神经系统疾病非规范翻译的机制基础
- 批准号:
10591832 - 财政年份:2023
- 资助金额:
$ 153.38万 - 项目类别:
Collaborative Research: EDGE CMT: Mechanistic basis of cricket wing dimorphism: predicting phenotype from genotype in complex threshold traits
合作研究:EDGE CMT:蟋蟀翅膀二态性的机制基础:从复杂阈值性状的基因型预测表型
- 批准号:
2319791 - 财政年份:2023
- 资助金额:
$ 153.38万 - 项目类别:
Standard Grant
Mechanistic Basis for CENP-32 Mediated Regulation of Cell Division
CENP-32 介导的细胞分裂调节的机制基础
- 批准号:
MR/X001245/1 - 财政年份:2023
- 资助金额:
$ 153.38万 - 项目类别:
Research Grant
Understanding the Mechanistic Basis of Irritant-Induced Airway Dysfunction
了解刺激性气道功能障碍的机制基础
- 批准号:
478893 - 财政年份:2023
- 资助金额:
$ 153.38万 - 项目类别:
Operating Grants
Mechanistic basis of exercise responses in liver disease
肝病运动反应的机制基础
- 批准号:
10749608 - 财政年份:2023
- 资助金额:
$ 153.38万 - 项目类别:
Mechanistic basis of sexual dimorphism in antigen-independent IgG1 angiogenesis regulation
抗原非依赖性 IgG1 血管生成调节中性二态性的机制基础
- 批准号:
10660051 - 财政年份:2023
- 资助金额:
$ 153.38万 - 项目类别:














{{item.name}}会员




